RioBotz Combot Tutorial
RioBotz Combot Tutorial
version 2.0 – March 2009
written by
Marco Antonio Meggiolaro
Head of the RioBotz team from PUC-Rio University
collaborators: Bruno Favoreto Fernandes Soares
Eduardo Carvalhal Lage von Buettner Ristow
Felipe Maimon
CONTENTS
1. INTRODUCTION 11
1.1. A Brief History of Robot Combat 12
1.2. Structure of the Tutorial 13
1.3. Acknowledgments 14
2. DESIGN FUNDAMENTALS 15
2.1. Weight Classes 15
2.2. Scale Factor 16
2.3. Combat Robot Types 20
2.3.1. Rammers 22
2.3.2. Wedges 22
2.3.3. Lifters 23
2.3.4. Launchers / Flippers 23
2.3.5. Thwackbots 24
2.3.6. Overhead Thwackbots 24
2.3.7. Spearbots 25
2.3.8. Horizontal Spinners 25
2.3.9. Sawbots 26
2.3.10. Vertical Spinners 26
2.3.11. Drumbots 27
2.3.12. Hammerbots 27
2.3.13. Clampers 28
2.3.14. Crushers 28
2.3.15. Flamethrowers 29
2.3.16. Multibots 29
2.4. Design Steps 30
2.4.1. Cost 30
2.4.2. Sponsorship 304
2.4.3. Designing the Robot 32
2.4.4. Calculations 34
2.4.5. Optimization 34
2.4.6. Building and Testing 38
2.5. Robot Structure 38
2.6. Robot Armor 40
2.6.1. Traditional Armor 40
2.6.2. Ablative Armor 40
2.6.3. Reactive Armor 40
2.7. Robot Drive System 41
2.7.1. Tank Treads and Legs 41
2.7.2. Wheel Types 41
2.7.3. Wheel Steering 42
2.7.4. Two-Wheel Drive 43
2.7.5. All-Wheel Drive 44
2.7.6. Omni-Directional Drive 45
2.7.7. Wheel Placement 45
2.7.8. Invertible Design 47
2.8. Robot Weapon System 48
2.9. Building Tools 48
3. MATERIALS 54
3.1. Mechanical Properties 54
3.2. Steels and Cast Irons 57
3.3. Aluminum Alloys 62
3.4. Titanium Alloys 64
3.5. Magnesium Alloys 67
3.6. Other Metals 68
3.7. Non-Metals 70
3.8. Material Selection Principles 75
3.8.1. Stiffness Optimization 75
3.8.2. Strength and Toughness Optimization 78
3.9. Minimum Weight Design 80
3.9.1. Minimum Weight Plates 81
3.9.2. Minimum Weight Internal Mounts 835
3.9.3. Minimum Weight Protected Structural Walls 85
3.9.4. Minimum Weight Integrated Structure-Armor Walls 88
3.9.5. Minimum Weight Wedges 89
3.9.6. Minimum Weight Traditional Armor 89
3.9.7. Minimum Weight Ablative Armor 91
3.9.8. Minimum Weight Beams 93
3.9.9. Minimum Weight Shafts and Gears 95
3.9.10. Minimum Weight Spinning Bars and Eggbeaters 96
3.9.11. Minimum Weight Spinning Disks, Shells and Drums 99
3.9.12. Minimum Weight Weapon Inserts 102
3.9.13. Minimum Weight Clamper and Crusher Claws 104
3.9.14. Minimum Weight Trusses 105
3.10. Minimum Volume Design 107
3.10.1. Compact-Sized Internal Mounts 108
3.10.2. Compact-Sized Drums 109
3.10.3. Compact-Sized Shafts, Gears and Weapon Parts 112
3.11. Conclusions on Materials Selection 113
4. JOINING ELEMENTS 117
4.1. Screws 117
4.2. Shaft Mounting 121
4.3. Rivets 123
4.4. Hinges 123
4.5. Welds 124
5. MOTORS AND TRANSMISSIONS 126
5.1. Brushed DC Motors 126
5.1.1. Example: Magmotor S28-150 129
5.1.2. Typical Brushed DC Motors 130
5.1.3. Identifying Unknown Brushed DC Motors 134
5.2. Brushless DC Motors 135
5.3. Power Transmission 137
5.3.1. Gears 137
5.3.2. Belts 139
5.3.3. Chains 1416
5.3.4. Flexible Couplings 141
5.3.5. Torque Limiters 142
5.4. Weapon and Drive System Calculations 142
5.4.1. Example: Design of Touro’s Drive System 142
5.4.2. Example: Design of Touro’s Weapon System 145
5.4.3. Energy and Capacity Consumption of Spinning Weapons 147
5.5. Pneumatic Systems 149
5.6. Hydraulic Systems 152
5.7. Internal Combustion Engines 153
6. WEAPON DESIGN 154
6.1. Spinning Bar Design 154
6.2. Spinning Disk Design 156
6.3. Tooth Design 158
6.3.1. Tooth Height and Bite 158
6.3.2. Number of Teeth 160
6.4. Impact Theory 161
6.4.1. Impact Equations 161
6.4.2. Limit Cases 163
6.4.3. Impact Energy 164
6.4.4. Example: Last Rites vs. Sir Loin 165
6.5. Effective Mass 168
6.5.1. Effective Mass of Horizontal Spinners 168
6.5.2. Effective Mass of Vertical Spinners and Drumbots 169
6.5.3. Example: Drumbot Impact 170
6.5.4. Effective Mass of Hammerbots 171
6.5.5. Full Body, Shell and Ring Drumbots 172
6.5.6. Effective Mass Summary 172
6.6. Effective Spring and Damper 174
6.6.1. A Simple Spring-Damper Model 174
6.6.2. Spring and Damper Energy 175
6.6.3. Offensive Strategies 176
6.6.4. Defensive Strategies 177
6.6.5. Case Study: Vertical Spinner Stiffness and Damping 178
6.6.6. Equivalent Electric Circuit 1797
6.7. Hammerbot Design 180
6.7.1. Hammer Energy 181
6.7.2. Hammer Impact 182
6.8. Overhead Thwackbot Design 183
6.9. Thwackbot Design 185
6.9.1. Thwackbot Equations 185
6.9.2. Melty Brain Control 187
6.9.3. NavBot Control 188
6.10. Launcher Design 190
6.10.1. Three-Bar Mechanisms 191
6.10.2. Launcher Equations 193
6.10.3. Height Launcher Equations 195
6.10.4. Range Launcher Equations 196
6.10.5. Four-Bar Mechanisms 200
6.10.6. Launcher Stability 200
6.11. Lifter Design 202
6.12. Clamper Design 203
6.13. Rammer Design 204
6.14. Wedge Design 205
6.14.1. Wedge Types and Shapes 206
6.14.2. Wedge Impact 208
6.14.3. Defensive Wedges 209
6.14.4. Offensive Wedges 211
6.14.5. Example: Offensive Wedge vs. Horizontal Spinner 211
6.14.6. Angled Impacts 212
6.14.7. Wedge Design Against Vertical Spinners 213
6.15. Gyroscopic Effect 215
6.16. Summary 219
7. ELECTRONICS 220
7.1. Radio Transmitter and Receiver 220
7.1.1. Transmitters 220
7.1.2. Receivers 222
7.1.3. Antennas 224
7.1.4. Gyroscopes 2258
7.1.5. Battery Elimination Circuit 225
7.1.6. Servos 226
7.2. Controlling Brushed DC Motors 227
7.2.1. Bang-Bang Control 227
7.2.2. Pulse Width Modulation 228
7.2.3. H-Bridge 229
7.3. Electronic Speed Controllers 231
7.3.1. OSMC – Open Source Motor Controller 231
7.3.2. IFI Victor 232
7.3.3. Robot Power Scorpion 234
7.3.4. BaneBots 236
7.3.5. Other Brushed Motor Speed Controllers 237
7.3.6. Brushless Electronic Speed Controllers 238
7.4. Solenoids 241
7.4.1. White-Rodgers 586 SPDT 241
7.4.2. Team Whyachi TW-C1 242
7.5. Wiring 243
7.5.1. Wires 243
7.5.2. Terminals, Plugs and Connectors 244
7.6. Power Switches 245
7.7. Connection Schemes 248
7.7.1. Classic Connection Scheme 248
7.7.2. Improved Connection Scheme 250
7.7.3. Connection Scheme for Reversible Weapons 252
7.8. Developing your Own Electronics 253
7.8.1. Speed Controller Development 253
7.8.2. RC Interface Development 257
8. BATTERIES 263
8.1. Battery Types 263
8.1.1. Sealed Lead Acid (SLA) 263
8.1.2. Nickel-Cadmium (NiCd) 264
8.1.3. Nickel-Metal Hydride (NiMH) 264
8.1.4. Alkaline 265
8.1.5. Lithium 2659
8.2. Battery Properties 268
8.2.1. Price 268
8.2.2. Weight 268
8.2.3. Voltage 268
8.2.4. Shelf Life 268
8.2.5. Number of Recharge Cycles 268
8.2.6. Charge Time 269
8.2.7. Self-Discharge 269
8.2.8. Discharge Curve 269
8.2.9. Internal Resistance 270
8.2.10. Capacity 270
8.2.11. De-Rating Factor 271
8.2.12. Discharge Rate 273
8.3. Battery Care and Tips 274
8.3.1. Shock Mounting 274
8.3.2. Recharging 274
8.3.3. Battery Storage 276
8.3.4. Assembling Your Own Pack 277
8.3.5. Billy Moon’s Rules for LiPo 278
9. COMBOT EVENTS 279
9.1. Before the Event 279
9.1.1. Test and Drive Your Robot 279
9.1.2. Prevent Common Failures 281
9.1.3. Lose Weight 283
9.1.4. Travel Preparations 286
9.2. During the Event 289
9.2.1. Getting Started 289
9.2.2. Waiting for Your Fight 291
9.2.3. Before Your Fight 293
9.2.4. During Your Fight 294
9.2.5. Deciding Who Won 294
9.2.6. After Your Fight 297
9.2.7. Between Fights 300
9.3. After the Event 30110
9.3.1. Battery Care 301
9.3.2. Inspect Your Robot 302
9.3.3. Wrap Up 303
10. RIOBOTZ BUILD REPORTS 304
10.1. Lacrainha 304
10.2. Lacraia 305
10.3. Anubis 306
10.4. Ciclone 309
10.5. Titan 315
10.6. Touro 319
10.7. Mini-Touro 327
10.8. Tourinho 330
10.9. Puminha 336
10.10. Touro Light 339
10.11. Micro-Touro 342
10.12. Touro Jr. 343
10.13. Touro Feather 344
10.14. Pocket 348
CONCLUSIONS 349
FAQ – Frequently Asked Questions 350
Bibliography 355
Appendix A – Conversion among Brinell, Vickers and Rockwell A, B and C hardnesses 357
Appendix B – Material Data 358
Appendix C – Stress Concentration Factor Graphs 360
Appendix D – Radio Control Channels and Frequencies 367
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
تعليقات