Relaxation in Physical and Mechanical Behavior of Polymers

Relaxation in Physical and Mechanical Behavior of Polymers
اسم المؤلف
Maxim Arzhakov
التاريخ
1 أغسطس 2020
المشاهدات
101
التقييم
(لا توجد تقييمات)
Loading...

Relaxation in Physical and Mechanical Behavior of Polymers
Maxim Arzhakov
Contents
Introduction vii
1. Viscoelasticity and relaxation 1
1.1. Mechanical models of a viscoelastic body 2
1.2. Molecular–kinetic foundations of physico-mechanical
behaviour of amorphous solids 10
1.3. Viscoelasticity and relaxation properties of
amorphous polymers 15
1.4. The principle of temperature–time superposition 25
2. Relaxation transitions in some polymers 30
2.1. Amorphous polymers 31
2.1.1. Relaxation ?-transition 33
2.1.2. Relaxation ?-transition and vitrification 35
2.1.3. ‘Liquid–liquid’ relaxation transition (ll-transition) 40
2.1.4. On the relationship of ?-, ?-, and ll-transitions 43
2.2. Plasticized polymers 45
2.2.1. Intrastructural (molecular) plastification 46
2.2.2. Interstructural plasticization 50
2.3. Semi-crystalline polymers 54
3. The role of relaxation processes in phase
transformations of polymers 60
4. Relaxation aspects of plastic deformation of
polymers 75
4.1. Polymeric glass 76
4.2. Semi-crystalline polymers 83
5. Relaxation of deformed polymers 88
5.1. Relaxation of the latent energy of deformed
polymer glasses 90
5.2. Relaxation of the dimensions of deformed polymervi Contents
glasses 93
5.3. Physical ageing of deformed polymeric glasses 99
6. The ‘brittleness–plasticity’ transition and the
low-temperature boundary of plasticity of polymers 102
7. Relaxation processes during processing of
thermoplastic polymers 114
7.1. Monolithization of powders in the P–T mode 116
7.2. Monolithization of powders in the ?–? mode 121
Appendix 1 126
Thermomechanical analysis 126
1. Static thermomechanical analysis 126
2. Dynamic thermomechanical analysis 127
Appendix 2 135
Structure of amorphous polymers 135
Appendix 3 139
Structure of semi-crystalline polymers 139
Appendix 4 144
Unification of the deformation behaviour of polymer
glasses 144
References 153
Index 15
References 159
Index
C
crystallization
isothermal crystallization 64
D
differential scanning calorimetry 30, 37, 48, 52, 54, 55, 56, 67, 68, 71, 72, 9
0, 92, 150
E
energy
Gibbs energy 59, 60, 61
latent energy 35, 89, 90, 91, 92, 93
equation
Arrhenius equation 31, 32
Eyring relationship 34
Falcher–Vogel-Tamman equation 106
Kolmogorov–Avrami equation 65
Thomson–Gibbs equation 68
Williams–Landel–Ferry equation 27, 28, 29, 106
F
fibril 83, 84
I
Interstructural plastification 50
Intrastructural plastification 46
K
kinetic units 10, 11, 12, 14, 15, 16, 17, 18, 20, 24, 28, 30, 35, 39, 41, 55,
57, 69, 72, 78, 85, 104, 111, 122, 128, 130, 131
L
law160 References
Hooke’s law 1, 2, 7, 12, 128
Newton’s law 1, 2, 128
limit of forced elasticity 48, 49, 50, 51, 76, 78, 79, 95, 96, 107, 143, 144, 14
5, 149, 151
linear viscoelasticity 9, 10, 22
M
mode
P–T mode 115, 118, 120, 121, 122
«stretch – shrink» mode 127
T–P mode 120, 121, 122
‘?–?’ mode 114
‘?–?’ mode 114
model
cluster model 105, 134, 135
combined model 8, 9
linear mechanical models 9
Maxwell mechanical model 2
Maxwell model 2, 4, 5, 7, 18
Voigt–Kelvin model 6, 7, 21
monolithization 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124
N
nucleation
heterogeneous nucleation 62, 63, 64, 65
homogeneous nucleation 62, 64, 65
number
Deborah number 13, 132
P
plasticizer 46, 47, 48, 50, 51, 52
polymer
Amorphous polymers 31
polycrystalline polymers 54, 55, 58
semicrystalline polymers 62, 65, 67, 74, 82, 85, 87, 88, 104, 105, 138, 142
polymorphism 139
R
ratio
Boyer ratio 37
relaxation
strain relaxation 4, 9, 21
stress relaxation 3, 5, 7, 18
IndexReferences 161
?-relaxation 35, 36, 38, 57
?-relaxation 33, 34, 35, 37, 57
rule
Zhurkov rule 46
S
stress relaxation 3, 5, 7, 18
T
temperature
glass transition temperature 10, 11, 16, 27, 28, 29, 31, 33, 35, 37, 38, 40,
44, 46, 47, 48, 50, 51, 64, 66, 71, 74, 89, 91, 94, 100, 104, 105, 106
, 110, 116, 117, 118, 119, 122, 125, 126, 132, 135, 147, 148, 150
theory
Gibbs–DiMarzio thermodynamic theory 106
transition
brittleness–plasticity’ transition 78, 85, 101, 104
ll-transition 40, 41, 42, 43
trans-gosh transitions 90
?-transition 32, 33, 35, 36, 37, 40, 41, 43, 48, 52, 54, 93, 98, 105
?-transition 33, 34, 35, 36, 43, 92, 98, 105, 111
?-transitions 32
V
viscoelasticity 1, 9, 10, 22, 24, 130
Index
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً