Organic Chemistry – Theory, Reactivity and Mechanisms in Modern Synthesis

Organic Chemistry – Theory, Reactivity and Mechanisms in Modern Synthesis
With a Foreword by Robert H. Grubbs
Pierre Vogel , Kendall N. Houk
Contents
Preface xv
Foreword xxix
1 Equilibria and thermochemistry 1
1.1 Introduction 1
1.2 Equilibrium-free enthalpy: reaction-free energy or Gibbs energy 1
1.3 Heat of reaction and variation of the entropy of reaction (reaction entropy) 2
1.4 Statistical thermodynamics 4
1.4.1 Contributions from translation energy levels 5
1.4.2 Contributions from rotational energy levels 5
1.4.3 Contributions from vibrational energy levels 6
1.4.4 Entropy of reaction depends above all on the change of the number of molecules between products
and reactants 7
1.4.5 Additions are favored thermodynamically on cooling, fragmentations on heating 7
1.5 Standard heats of formation 8
1.6 What do standard heats of formation tell us about chemical bonding and ground-state properties of
organic compounds? 9
1.6.1 Effect of electronegativity on bond strength 10
1.6.2 Effects of electronegativity and of hyperconjugation 11
1.6.3 ?-Conjugation and hyperconjugation in carboxylic functions 12
1.6.4 Degree of chain branching and Markovnikov’s rule 13
1.7 Standard heats of typical organic reactions 14
1.7.1 Standard heats of hydrogenation and hydrocarbation 14
1.7.2 Standard heats of C–H oxidations 15
1.7.3 Relative stabilities of alkyl-substituted ethylenes 17
1.7.4 Effect of fluoro substituents on hydrocarbon stabilities 17
1.7.5 Storage of hydrogen in the form of formic acid 18
1.8 Ionization energies and electron affinities 20
1.9 Homolytic bond dissociations; heats of formation of radicals 22
1.9.1 Measurement of bond dissociation energies 22
1.9.2 Substituent effects on the relative stabilities of radicals 25
1.9.3 ?-Conjugation in benzyl, allyl, and propargyl radicals 25
1.10 Heterolytic bond dissociation enthalpies 28
1.10.1 Measurement of gas-phase heterolytic bond dissociation enthalpies 28
1.10.2 Thermochemistry of ions in the gas phase 29
1.10.3 Gas-phase acidities 30
1.11 Electron transfer equilibria 32
1.12 Heats of formation of neutral, transient compounds 32
1.12.1 Measurements of the heats of formation of carbenes 32
1.12.2 Measurements of the heats of formation of diradicals 33
1.12.3 Keto/enol tautomerism 33
1.12.4 Heat of formation of highly reactive cyclobutadiene 36
1.12.5 Estimate of heats of formation of diradicals 36vi Contents
1.13 Electronegativity and absolute hardness 37
1.14 Chemical conversion and selectivity controlled by thermodynamics 40
1.14.1 Equilibrium shifts (Le Chatelier’s principle in action) 40
1.14.2 Importance of chirality in biology and medicine 41
1.14.3 Resolution of racemates into enantiomers 43
1.14.4 Thermodynamically controlled deracemization 46
1.14.5 Self-disproportionation of enantiomers 48
1.15 Thermodynamic (equilibrium) isotopic effects 49
1.A Appendix, Table 1.A.1 to Table 1.A.24 53
References 92
2 Additivity rules for thermodynamic parameters and deviations 109
2.1 Introduction 109
2.2 Molecular groups 110
2.3 Determination of the standard group equivalents (group equivalents) 111
2.4 Determination of standard entropy increments 113
2.5 Steric effects 114
2.5.1 Gauche interactions: the preferred conformations of alkyl chains 114
2.5.2 (E)- vs. (Z)-alkenes and ortho-substitution in benzene derivatives 117
2.6 Ring strain and conformational flexibility of cyclic compounds 117
2.6.1 Cyclopropane and cyclobutane have nearly the same strain energy 118
2.6.2 Cyclopentane is a flexible cycloalkane 119
2.6.3 Conformational analysis of cyclohexane 119
2.6.4 Conformational analysis of cyclohexanones 121
2.6.5 Conformational analysis of cyclohexene 122
2.6.6 Medium-sized cycloalkanes 122
2.6.7 Conformations and ring strain in polycycloalkanes 124
2.6.8 Ring strain in cycloalkenes 125
2.6.9 Bredt’s rule and “anti-Bredt” alkenes 125
2.6.10 Allylic 1,3- and 1,2-strain: the model of banana bonds 126
2.7 ??/?-, n/?-, ?/?-, and n/?-interactions 127
2.7.1 Conjugated dienes and diynes 127
2.7.2 Atropisomerism in 1,3-dienes and diaryl compounds 129
2.7.3 ??,?-Unsaturated carbonyl compounds 130
2.7.4 Stabilization by aromaticity 130
2.7.5 Stabilization by n(Z:)/?? conjugation 132
2.7.6 ??/?-Conjugation and ??/?-hyperconjugation in esters, thioesters, and amides 133
2.7.7 Oximes are more stable than imines toward hydrolysis 136
2.7.8 Aromatic stabilization energies of heterocyclic compounds 136
2.7.9 Geminal disubstitution: enthalpic anomeric effects 139
2.7.10 Conformational anomeric effect 141
2.8 Other deviations to additivity rules 144
2.9 Major role of translational entropy on equilibria 146
2.9.1 Aldol and crotonalization reactions 146
2.9.2 Aging of wines 148
2.10 Entropy of cyclization: loss of degrees of free rotation 151
2.11 Entropy as a synthetic tool 151
2.11.1 Pyrolysis of esters 151
2.11.2 Method of Chugaev 152
2.11.3 Eschenmoser–Tanabe fragmentation 152
2.11.4 Eschenmoser fragmentation 153
2.11.5 Thermal 1,4-eliminations 153
2.11.6 Retro-Diels–Alder reactions 156
2.A Appendix, Table 2.A.1 to Table 2.A.2 157
References 161Contents vii
3 Rates of chemical reactions 177
3.1 Introduction 177
3.2 Differential and integrated rate laws 177
3.2.1 Order of reactions 178
3.2.2 Molecularity and reaction mechanisms 179
3.2.3 Examples of zero order reactions 181
3.2.4 Reversible reactions 182
3.2.5 Parallel reactions 183
3.2.6 Consecutive reactions and steady-state approximation 183
3.2.7 Consecutive reactions: maximum yield of the intermediate product 184
3.2.8 Homogeneous catalysis: Michaelis–Menten kinetics 185
3.2.9 Competitive vs. noncompetitive inhibition 186
3.2.10 Heterogeneous catalysis: reactions at surfaces 187
3.3 Activation parameters 188
3.3.1 Temperature effect on the selectivity of two parallel reactions 190
3.3.2 The Curtin–Hammett principle 190
3.4 Relationship between activation entropy and the reaction mechanism 192
3.4.1 Homolysis and radical combination in the gas phase 192
3.4.2 Isomerizations in the gas phase 193
3.4.3 Example of homolysis assisted by bond formation: the Cope rearrangement 195
3.4.4 Example of homolysis assisted by bond-breaking and bond-forming processes: retro–carbonyl–ene
reaction 195
3.4.5 Can a reaction be assisted by neighboring groups? 197
3.5 Competition between cyclization and intermolecular condensation 197
3.5.1 Thorpe–Ingold effect 198
3.6 Effect of pressure: activation volume 201
3.6.1 Relationship between activation volume and the mechanism of reaction 201
3.6.2 Detection of change of mechanism 202
3.6.3 Synthetic applications of high pressure 203
3.6.4 Rate enhancement by compression of reactants along the reaction coordinates 204
3.6.5 Structural effects on the rate of the Bergman rearrangement 205
3.7 Asymmetric organic synthesis 206
3.7.1 Kinetic resolution 206
3.7.2 Parallel kinetic resolution 211
3.7.3 Dynamic kinetic resolution: kinetic deracemization 212
3.7.4 Synthesis starting from enantiomerically pure natural compounds 215
3.7.5 Use of recoverable chiral auxiliaries 217
3.7.6 Catalytic desymmetrization of achiral compounds 220
3.7.7 Nonlinear effects in asymmetric synthesis 226
3.7.8 Asymmetric autocatalysis 228
3.8 Chemo- and site-selective reactions 229
3.9 Kinetic isotope effects and reaction mechanisms 231
3.9.1 Primary kinetic isotope effects: the case of hydrogen transfers 231
3.9.2 Tunneling effects 232
3.9.3 Nucleophilic substitution and elimination reactions 234
3.9.4 Steric effect on kinetic isotope effects 239
3.9.5 Simultaneous determination of multiple small kinetic isotope effects at natural
abundance 239
References 240
4 Molecular orbital theories 271
4.1 Introduction 271
4.2 Background of quantum chemistry 271
4.3 Schr?dinger equation 272
4.4 Coulson and Longuet-Higgins approach 274viii Contents
4.4.1 Hydrogen molecule 275
4.4.2 Hydrogenoid molecules: The PMO theory 276
4.5 Hückel method 277
4.5.1 ?-Molecular orbitals of ethylene 278
4.5.2 Allyl cation, radical, and anion 279
4.5.3 Shape of allyl ?-molecular orbitals 282
4.5.4 Cyclopropenyl systems 282
4.5.5 Butadiene 285
4.5.6 Cyclobutadiene and its electronic destabilization (antiaromaticity) 286
4.5.7 Geometries of cyclobutadienes, singlet and triplet states 288
4.5.8 Pentadienyl and cyclopentadienyl systems 291
4.5.9 Cyclopentadienyl anion and bishomocyclopentadienyl anions 292
4.5.10 Benzene and its aromatic stabilization energy 294
4.5.11 3,4-Dimethylidenecyclobutene is not stabilized by ?-conjugation 295
4.5.12 Fulvene 297
4.5.13 [N]Annulenes 298
4.5.14 Cyclooctatetraene 301
4.5.15 ?-systems with heteroatoms 302
4.6 Aromatic stabilization energy of heterocyclic compounds 305
4.7 Homoconjugation 308
4.7.1 Homoaromaticity in cyclobutenyl cation 308
4.7.2 Homoaromaticity in homotropylium cation 308
4.7.3 Homoaromaticity in cycloheptatriene 310
4.7.4 Bishomoaromaticity in bishomotropylium ions 311
4.7.5 Bishomoaromaticity in neutral semibullvalene derivatives 312
4.7.6 Barrelene effect 313
4.8 Hyperconjugation 314
4.8.1 Neutral, positive, and negative hyperconjugation 314
4.8.2 Hyperconjugation in cyclopentadienes 315
4.8.3 Nonplanarity of bicyclo[2.2.1]hept-2-ene double bond 315
4.8.4 Conformation of unsaturated and saturated systems 317
4.8.5 Hyperconjugation in radicals 319
4.8.6 Hyperconjugation in carbenium ions 320
4.8.7 Hyperconjugation in carbanions 320
4.8.8 Cyclopropyl vs. cyclobutyl substituent effect 322
4.9 Heilbronner M?bius aromatic [N]annulenes 324
4.10 Conclusion 326
References 326
5 Pericyclic reactions 339
5.1 Introduction 339
5.2 Electrocyclic reactions 340
5.2.1 Stereochemistry of thermal cyclobutene-butadiene isomerization: four-electron electrocyclic
reactions 340
5.2.2 Longuet-Higgins correlation of electronic configurations 342
5.2.3 Woodward–Hoffmann simplification 345
5.2.4 Aromaticity of transition states in cyclobutene/butadiene electrocyclizations 346
5.2.5 Torquoselectivity of cyclobutene electrocyclic reactions 347
5.2.6 Nazarov cyclizations 350
5.2.7 Thermal openings of three-membered ring systems 354
5.2.8 Six-electron electrocyclic reactions 357
5.2.9 Eight-electron electrocyclic reactions 360
5.3 Cycloadditions and cycloreversions 361
5.3.1 Stereoselectivity of thermal [??2+??2]-cycloadditions: Longuet-Higgins model 362Contents ix
5.3.2 Woodward–Hoffmann rules for cycloadditions 364
5.3.3 Aromaticity of cycloaddition transition structures 366
5.3.4 Mechanism of thermal [??2+??2]-cycloadditions and [??2+??2]-cycloreversions: 1,4-diradical/zwitterion
intermediates or diradicaloid transition structures 368
5.3.5 Cycloadditions of allenes 372
5.3.6 Cycloadditions of ketenes and keteniminium salts 373
5.3.7 Wittig olefination 380
5.3.8 Olefinations analogous to the Wittig reaction 384
5.3.9 Diels–Alder reaction: concerted and non-concerted mechanisms compete 387
5.3.10 Concerted Diels–Alder reactions with synchronous or asynchronous transition states 391
5.3.11 Diradicaloid model for transition states of concerted Diels–Alder reactions 392
5.3.12 Structural effects on the Diels–Alder reactivity 397
5.3.13 Regioselectivity of Diels–Alder reactions 399
5.3.14 Stereoselectivity of Diels–Alder reactions: the Alder “endo rule” 406
5.3.15 ?-Facial selectivity of Diels–Alder reactions 408
5.3.16 Examples of hetero-Diels–Alder reactions 411
5.3.17 1,3-Dipolar cycloadditions 420
5.3.18 Sharpless asymmetric dihydroxylation of alkenes 428
5.3.19 Thermal (2+2+2)-cycloadditions 428
5.3.20 Noncatalyzed (4+3)- and (5+2)-cycloadditions 431
5.3.21 Thermal higher order (m+n)-cycloadditions 434
5.4 Cheletropic reactions 437
5.4.1 Cyclopropanation by (2+1)-cheletropic reaction of carbenes 437
5.4.2 Aziridination by (2+1)-cheletropic addition of nitrenes 440
5.4.3 Decarbonylation of cyclic ketones by cheletropic elimination 442
5.4.4 Cheletropic reactions of sulfur dioxide 444
5.4.5 Cheletropic reactions of heavier congeners of carbenes and nitrenes 447
5.5 Thermal sigmatropic rearrangements 451
5.5.1 (1,2)-Sigmatropic rearrangement of carbenium ions 451
5.5.2 (1,2)-Sigmatropic rearrangements of radicals 456
5.5.3 (1,2)-Sigmatropic rearrangements of organoalkali compounds 459
5.5.4 (1,3)-Sigmatropic rearrangements 462
5.5.5 (1,4)-Sigmatropic rearrangements 465
5.5.6 (1,5)-Sigmatropic rearrangements 467
5.5.7 (1,7)-Sigmatropic rearrangements 469
5.5.8 (2,3)-Sigmatropic rearrangements 470
5.5.9 (3,3)-Sigmatropic rearrangements 476
5.5.9.1 Fischer indole synthesis (3,4-diaza-Cope rearrangement) 476
5.5.9.2 Claisen rearrangement and its variants (3-oxa-Cope rearrangements) 476
5.5.9.3 Aza-Claisen rearrangements (3-aza-Cope rearrangements) 481
5.5.9.4 Overman rearrangement (1-oxa-3-aza-Cope rearrangement) 483
5.5.9.5 Thia-Claisen rearrangement (3-thia-Cope rearrangement) 484
5.5.9.6 Cope rearrangements 484
5.5.9.7 Facile anionic oxy-Cope rearrangements 489
5.5.9.8 Acetylenic Cope rearrangements 491
5.5.9.9 Other hetero-Cope rearrangements 492
5.6 Dyotropic rearrangements and transfers 495
5.6.1 Type I dyotropic rearrangements 496
5.6.2 Alkene and alkyne reductions with diimide 498
5.6.3 Type II dyotropic rearrangements 499
5.7 Ene-reactions and related reactions 500
5.7.1 Thermal Alder ene-reactions 501
5.7.2 Carbonyl ene-reactions 504
5.7.3 Other hetero-ene reactions involving hydrogen transfers 504x Contents
5.7.4 Metallo-ene-reactions 508
5.7.5 Carbonyl allylation with allylmetals: carbonyl metallo-ene-reactions 509
5.7.6 Aldol reaction 514
5.7.7 Reactions of metal enolates with carbonyl compounds 518
References 526
6 Organic photochemistry 615
6.1 Introduction 615
6.2 Photophysical processes of organic compounds 615
6.2.1 UV–visible spectroscopy: electronic transitions 616
6.2.2 Fluorescence and phosphorescence: singlet and triplet excited states 620
6.2.3 Bimolecular photophysical processes 623
6.3 Unimolecular photochemical reactions of unsaturated hydrocarbons 626
6.3.1 Photoinduced (E)/(Z)-isomerization of alkenes 626
6.3.2 Photochemistry of cyclopropenes, allenes, and alkynes 630
6.3.3 Electrocyclic ring closures of conjugated dienes and ring opening of cyclobutenes 631
6.3.4 The di-?-methane (Zimmerman) rearrangement of 1,4-dienes 633
6.3.5 Electrocyclic interconversions of cyclohexa-1,3-dienes and hexa-1,3,5-trienes 635
6.4 Unimolecular photochemical reactions of carbonyl compounds 637
6.4.1 Norrish type I reaction (?-cleavage) 637
6.4.2 Norrish type II reaction and other intramolecular hydrogen transfers 639
6.4.3 Unimolecular photochemistry of enones and dienones 642
6.5 Unimolecular photoreactions of benzene and heteroaromatic analogs 644
6.5.1 Photoisomerization of benzene 644
6.5.2 Photoisomerizations of pyridines, pyridinium salts, and diazines 646
6.5.3 Photolysis of five-membered ring heteroaromatic compounds 647
6.6 Photocleavage of carbon–heteroatom bonds 649
6.6.1 Photo-Fries, photo-Claisen, and related rearrangements 649
6.6.2 Photolysis of 1,2-diazenes, 3H-diazirines, and diazo compounds 651
6.6.3 Photolysis of alkyl halides 654
6.6.4 Solution photochemistry of aryl and alkenyl halides 657
6.6.5 Photolysis of phenyliodonium salts: formation of aryl and alkenyl cation intermediates 659
6.6.6 Photolytic decomposition of arenediazonium salts in solution 660
6.7 Photocleavage of nitrogen—nitrogen bonds 661
6.7.1 Photolysis of azides 662
6.7.2 Photo-Curtius rearrangement 664
6.7.3 Photolysis of geminal diazides 665
6.7.4 Photolysis of 1,2,3-triazoles and of tetrazoles 666
6.8 Photochemical cycloadditions of unsaturated compounds 667
6.8.1 Photochemical intramolecular (2+2)-cycloadditions of alkenes 668
6.8.2 Photochemical intermolecular (2+2)-cycloadditions of alkenes 672
6.8.3 Photochemical intermolecular (4+2)-cycloadditions of dienes and alkenes 676
6.8.4 Photochemical cycloadditions of benzene and derivatives to alkenes 677
6.8.5 Photochemical cycloadditions of carbonyl compounds 681
6.8.6 Photochemical cycloadditions of imines and related C=N double-bonded compounds 686
6.9 Photo-oxygenation 688
6.9.1 Reactions of ground-state molecular oxygen with hydrocarbons 688
6.9.2 Singlet molecular oxygen 691
6.9.3 Diels–Alder reactions of singlet oxygen 695
6.9.4 Dioxa-ene reactions of singlet oxygen 700
6.9.5 (2+2)-Cycloadditions of singlet oxygen 704
6.9.6 1,3-Dipolar cycloadditions of singlet oxygen 705
6.9.7 Nonpericyclic reactions of singlet oxygen 707
6.10 Photoinduced electron transfers 710Contents xi
6.10.1 Marcus model 711
6.10.2 Catalysis through photoreduction 711
6.10.3 Photoinduced net reductions 715
6.10.4 Catalysis through photo-oxidation 717
6.10.5 Photoinduced net oxidations 721
6.10.6 Generation of radical intermediates by PET 724
6.10.7 Dye-sensitized solar cells 726
6.11 Chemiluminescence and bioluminescence 727
6.11.1 Thermal isomerization of Dewar benzene into benzene 728
6.11.2 Oxygenation of electron-rich organic compounds 729
6.11.3 Thermal fragmentation of 1,2-dioxetanes 732
6.11.4 Peroxylate chemiluminescence 734
6.11.5 Firefly bioluminescence 734
References 735
7 Catalytic reactions 795
7.1 Introduction 795
7.2 Acyl group transfers 798
7.2.1 Esterification and ester hydrolysis 798
7.2.2 Acid or base-catalyzed acyl transfers 799
7.2.3 Amphoteric compounds are good catalysts for acyl transfers 802
7.2.4 Catalysis by nucleofugal group substitution 802
7.2.5 N-heterocyclic carbene-catalyzed transesterifications 804
7.2.6 Enzyme-catalyzed acyl transfers 806
7.2.7 Mimics of carboxypeptidase A 807
7.2.8 Direct amide bond formation from amines and carboxylic acids 807
7.3 Catalysis of nucleophilic additions 810
7.3.1 Catalysis of nucleophilic additions to aldehydes, ketones and imines 810
7.3.2 Bifunctional catalysts for nucleophilic addition/elimination 811
7.3.3 ?- and ?-Nucleophiles as catalysts for nucleophilic additions to aldehydes and ketones 812
7.3.4 Catalysis by self-assembled encapsulation 813
7.3.5 Catalysis of 1,4-additions (conjugate additions) 814
7.4 Anionic nucleophilic displacement reactions 815
7.4.1 Pulling on the leaving group 815
7.4.2 Phase transfer catalysis 816
7.5 Catalytical Umpolung C—C bond forming reactions 818
7.5.1 Benzoin condensation: Umpolung of aldehydes 819
7.5.2 Stetter reaction: Umpolung of aldehydes 821
7.5.3 Umpolung of enals 822
7.5.4 Umpolung of Michael acceptors 823
7.5.5 Rauhut–Currier reaction 826
7.5.6 Morita–Baylis–Hillman reaction 826
7.5.7 Nucleophilic catalysis of cycloadditions 828
7.5.8 Catalysis through electron-transfer: hole-catalyzed reactions 831
7.5.9 Umpolung of enamines 834
7.5.10 Catalysis through electron-transfer: Umpolung through electron capture 836
7.6 Br?nsted and Lewis acids as catalysts in C—C bond forming reactions 836
7.6.1 Mukaiyama aldol reactions 839
7.6.2 Metallo-carbonyl-ene reactions 843
7.6.3 Carbonyl-ene reactions 846
7.6.4 Imine-ene reactions 847
7.6.5 Alder-ene reaction 848
7.6.6 Diels–Alder reaction 849
7.6.7 Br?nsted and Lewis acid-catalyzed hetero-Diels-Alder reactions 851xii Contents
7.6.8 Acid-catalyzed (2+2)-cycloadditions 853
7.6.9 Lewis acid catalyzed (3+2)- and (3+3)-cycloadditions 855
7.6.10 Lewis acid promoted (5+2)-cycloadditions 857
7.7 Bonding in transition metal complexes and their reactions 858
7.7.1 The ?-complex theory 858
7.7.2 The isolobal formalism 860
7.7.3 ?-Complexes of dihydrogen 863
7.7.4 ?-Complexes of C—H bonds and agostic bonding 866
7.7.5 ?-Complexes of C—C bonds and C—C bond activation 867
7.7.6 Reactions of transition metal complexes are modeled by reactions of organic chemistry 869
7.7.7 Ligand exchange reactions 869
7.7.8 Oxidative additions and reductive eliminations 873
7.7.9 ?-Insertions/?-eliminations 880
7.7.10 ?-Insertions/?-eliminations 883
7.7.11 ?-Cycloinsertions/?-cycloeliminations: metallacyclobutanes, metallacyclobutenes 886
7.7.12 Metallacyclobutenes: alkyne polymerization, enyne metathesis, cyclopentadiene synthesis 887
7.7.13 Metallacyclobutadiene: alkyne metathesis 889
7.7.14 Matallacyclopentanes, metallacyclopentenes, metallacyclopentadienes: oxidative cyclizations
(?-cycloinsertions) and reductive fragmentations (?-cycloeliminations) 890
7.8 Catalytic hydrogenation 891
7.8.1 Heterogeneous catalysts for alkene, alkyne, and arene hydrogenation 892
7.8.2 Homogeneous catalysts for alkene and alkyne hydrogenation 894
7.8.3 Dehydrogenation of alkanes 897
7.8.4 Hydrogenation of alkynes into alkenes 897
7.8.5 Catalytic hydrogenation of arenes and heteroarenes 899
7.8.6 Catalytic hydrogenation of ketones and aldehydes 899
7.8.7 Catalytic hydrogenation of carboxylic acids, their esters and amides 902
7.8.8 Hydrogenation of carbon dioxide 903
7.8.9 Catalytic hydrogenation of nitriles and imines 904
7.8.10 Catalytic hydrogenolysis of C–halogen and C–chalcogen bonds 906
7.9 Catalytic reactions of silanes 906
7.9.1 Reduction of alkyl halides 906
7.9.2 Reduction of carbonyl compounds 907
7.9.3 Alkene hydrosilylation 909
7.10 Hydrogenolysis of C—C single bonds 910
7.11 Catalytic oxidations with molecular oxygen 911
7.11.1 Heme-dependent monooxygenase oxidations 912
7.11.2 Chemical aerobic C—H oxidations 914
7.11.3 Reductive activation of molecular oxygen 917
7.11.4 Oxidation of alcohols with molecular oxygen 918
7.11.5 Wacker process 920
7.12 Catalyzed nucleophilic aromatic substitutions 922
7.12.1 Ullmann–Goldberg reactions 923
7.12.2 Buchwald–Hartwig reactions 926
References 927
8 Transition-metal-catalyzed C—C bond forming reactions 1029
8.1 Introduction 1029
8.2 Organic compounds from carbon monoxide 1030
8.2.1 Fischer–Tropsch reactions 1030
8.2.2 Carbonylation of methanol 1032
8.2.3 Hydroformylation of alkenes 1034
8.2.4 Silylformylation 1039
8.2.5 Reppe carbonylations 1041Contents xiii
8.2.6 Pd(II)-mediated oxidative carbonylations 1042
8.2.7 Pauson–Khand reaction 1043
8.2.8 Carbonylation of halides: synthesis of carboxylic derivatives 1047
8.2.9 Reductive carbonylation of halides: synthesis of carbaldehydes 1049
8.2.10 Carbonylation of epoxides and aziridines 1050
8.2.11 Hydroformylation and silylformylation of epoxides 1053
8.3 Direct hydrocarbation of unsaturated compounds 1053
8.3.1 Hydroalkylation of alkenes: alkylation of alkanes 1054
8.3.2 Alder ene-reaction of unactivated alkenes and alkynes 1056
8.3.3 Hydroarylation of alkenes: alkylation of arenes and heteroarenes 1057
8.3.4 Hydroarylation of alkynes: alkenylation of arenes and heteroarenes 1060
8.3.5 Hydroarylation of carbon-heteroatom multiple bonds 1062
8.3.6 Hydroalkenylation of alkynes, alkenes, and carbonyl compounds 1062
8.3.7 Hydroacylation of alkenes and alkynes 1063
8.3.8 Hydrocyanation of alkenes and alkynes 1066
8.3.9 Direct reductive hydrocarbation of unsaturated compounds 1067
8.3.10 Direct hydrocarbation via transfer hydrogenation 1069
8.4 Carbacarbation of unsaturated compounds and cycloadditions 1070
8.4.1 Formal [??2+??2]-cycloadditions 1072
8.4.2 (2+1)-Cycloadditions 1072
8.4.3 Ohloff–Rautenstrauch cyclopropanation 1077
8.4.4 [??2+??2]-Cycloadditions 1078
8.4.5 (3+1)-Cycloadditions 1080
8.4.6 (3+2)-Cycloadditions 1081
8.4.7 (4+1)-Cycloadditions 1087
8.4.8 (2+2+1)-Cycloadditions 1089
8.4.9 [??4+??2]-Cycloadditions of unactivated cycloaddents 1090
8.4.10 (2+2+2)-Cycloadditions 1096
8.4.11 (3+3)-Cycloadditions 1101
8.4.12 (3+2+1)-Cycloadditions 1102
8.4.13 (4+3)-Cycloadditions 1103
8.4.14 (5+2)-Cycloadditions 1105
8.4.15 (4+4)-Cycloadditions 1108
8.4.16 (4+2+2)-Cycloadditions 1109
8.4.17 (6+2)-Cycloadditions 1110
8.4.18 (2+2+2+2)-Cycloadditions 1111
8.4.19 (5+2+1)-Cycloadditions 1112
8.4.20 (7+1)-Cycloadditions 1112
8.4.21 Further examples of high-order catalyzed cycloadditions 1112
8.4.22 Annulations through catalytic intramolecular hydrometallation 1115
8.4.23 Oxidative annulations 1115
8.5 Didehydrogenative C—C-coupling reactions 1116
8.5.1 Glaser–Hay reaction: oxidative alkyne homocoupling 1116
8.5.2 Oxidative C—C cross-coupling reactions 1117
8.5.3 Oxidative aryl/aryl homocoupling reactions 1119
8.5.4 Oxidative aryl/aryl cross-coupling reactions 1121
8.5.5 TEMPO-cocatalyzed oxidative C—C coupling reactions 1122
8.5.6 Oxidative aminoalkylation of alkynes and active C—H moieties 1123
8.6 Alkane, alkene, and alkyne metathesis 1124
8.6.1 Alkane metathesis 1125
8.6.2 Alkene metathesis 1126
8.6.3 Enyne metathesis: alkene/alkyne cross-metathesis 1131
8.6.4 Alkyne metathesis 1133
8.7 Additions of organometallic reagents 1134xiv Contents
8.7.1 Additions of Grignard reagents 1136
8.7.2 Additions of alkylzinc reagents 1142
8.7.3 Additions of organoaluminum compounds 1143
8.7.4 Additions of organoboron, silicium , and zirconium compounds 1145
8.8 Displacement reactions 1148
8.8.1 Kharash cross-coupling and Kumada–Tamao–Corriu reaction 1148
8.8.2 Negishi cross-coupling 1154
8.8.3 Stille cross-coupling and carbonylative Stille reaction 1157
8.8.4 Suzuki–Miyaura cross-coupling 1161
8.8.5 Hiyama cross-coupling 1166
8.8.6 Tsuji–Trost reaction: allylic alkylation 1168
8.8.7 Mizoroki–Heck coupling 1171
8.8.8 Sonogashira–Hagihara cross-coupling 1179
8.8.9 Arylation of arenes(heteroarenes) with aryl(heteroaryl) derivatives 1182
8.8.10 ?-Arylation of carbonyl compounds and nitriles 1187
8.8.11 Direct arylation and alkynylation of nonactivated C—H bonds in alkyl groups 1189
8.8.12 Direct alkylation of nonactivated C—H bonds in alkyl groups 1190
References 1191
Index 1317
1317
Index
A
aaptosine 358, 359
ab initio Hartree–Fock (HF) calculations 273
absolute asymmetric synthesis 634, 635
absolute electronegativity 37
absolute hardness 37–39, 839
absolute softness 37
absorbance 616
absorption complex 624, 667
absorption on crystalline quartz 44
acetaldehyde 15, 18, 60, 66, 70, 80, 82, 86, 145, 146, 147,
195, 197, 223, 514, 551, 619, 683, 686, 697, 732, 797,
819, 855, 920, 921, 1168
acetamide 62, 66, 82, 89, 619
acetic acid 12, 13, 49, 60, 87, 89, 151, 373, 503, 619, 650,
699, 800, 808, 900, 1030, 1032–1034, 1050
acetic anhydride 12, 61, 216, 619, 802, 1033
acetone 15, 25, 35, 36, 60, 70, 80, 85, 86, 88, 90, 122,
143, 146–148, 153, 203, 210, 213, 224, 226, 229–232,
373, 374, 382, 383, 412, 413, 435, 619, 622, 623, 628,
633, 637, 638, 641, 656, 662, 669, 671, 682, 685, 686,
688, 722, 732, 733, 837, 878, 897, 1057, 1066, 1067,
1069, 1107
acetophenone 82, 715, 725
5-acetoxy- and 5-chlorocyclopentadiene 408
acetoxypyranone 433
acetyl chloride 11, 63, 619
acetylenes, Pd-catalyzed carbonylation of 1043
acetylide anions 1124
achiral alkene 703
achiral allenamide 433
acid catalyzed cationic cyclization 383
acid-catalyzed (2+2)-cycloadditions 853, 855
acid or base-catalyzed acyl transfers 799–802
acrolein 8, 304, 393, 401, 402, 433, 520, 827, 921, 1074
acrylic derivative 20, 39, 130, 501, 717, 796, 825
acrylic ester 8, 60, 372, 387, 406, 426, 674, 826, 827,
1041, 1060, 1067, 1081, 1142, 1175
acrylonitrile 8, 40, 62, 369, 393, 399, 430, 507, 667, 676,
678, 681, 682, 824, 826, 1074, 1081
activation enthalpy 23, 39, 188, 195–196, 204, 205, 206,
217, 339, 341, 345, 370, 393, 398, 411, 412, 443, 444,
452, 453, 462, 465, 500, 697, 728
activation entropy 39, 188, 190, 192–196, 198, 369, 500,
689, 695, 872
activation entropy and reaction mechanism
– Cope rearrangement 195
– gas phase
– – homolysis and radical combination 192–193
– – isomerizations 193–194
– neighboring group directing effects 197
– retro-carbonyl-ene reaction 195–197
activation parameters
– Curtin–Hammett principle 190–192
– temperature effect, two parallel reactions 190
acyclic ??,??- and ??,??-enones 60, 642
acyclic alkylaminocarbene 439
acyclic diene 55, 468, 633, 1126
acyclic 1,3-dienes 55, 697, 698
acyclic dithiosilylene 448
acyclic peroxides 729
(1,2)-acyloxy shifts 458
acyl group transfers 209, 212, 221, 798–810
acyl transfers 209–211, 213, 799, 802–807, 810
3,3-(adamant-2-yl)-3H-diazirine 652
(adamant-1-yl)nitrene 662
addition
– of alkylzinc reagents 1142–1143
– of Grignard reagents 1136–1142
– of organoaluminum compounds 1143–1145
– of organoboron 1145–1148
– of silicium 1145–1148
– of zirconium compounds 1145–1148
addition–elimination mechanism 238, 658, 922, 923,
1134, 1180
additivity rules
– ??,??-unsaturated carbonyl compounds 130
– atropisomerism in 1,3-dienes and diaryl compounds
129–130
– conjugated dienes and diynes 127–129
– molecular groups
– – additivity of, molecular properties 110
additivity rules (contd.)
– – group additivity methods 110
– – toluene formation 111
– oximes 136
– standard entropy increments 113–114
– standard group equivalents 111–113
– steric effects
– – allylic 1,3-strain 126, 127
– – anti-Bredt alkenes 125–126
– – Bredt’s rule 125, 126
– – cyclobutane 118–119
– – cyclohexane 119–121
– – cyclohexanones 121–122
– – cyclohexene 122
– – cyclopentane 119, 120
– – cyclopropane 118
– – (E)- vs.(Z)-alkenes 117
– – Gauche interactions 114–117
– – medium-sized cycloalkanes 122–124
– – polycycloalkanes, conformations and ring strain
124
– – ring strain and conformational flexibility 117, 118
– – ring strain in cycloalkenes 125
– translational entropy on equilibria
– – ageing of wines 148, 149
– – aldol reaction 146–148
– – and crotonalization reactions 146–148
adiabatic transition 21, 617, 711
adsorption on achiral surfaces 44
aerobic C–H oxidations 914–917
aerobic didehydrogenative coupling reaction 1029,
1116
ageing of wines 148–151
alcohols oxidation with molecular oxygen 918–920
alcoholysis 431, 798, 800, 806
aldehydes 13–16, 38, 40, 42, 49, 60, 66, 136, 145–147,
157, 212, 218, 219, 222, 224–226, 240, 297, 302–304,
380, 382, 383, 385–387, 411–415, 419, 427, 439, 460,
481, 493, 494, 502–504, 508–518, 520, 523, 524, 619,
637, 681, 683, 686, 687, 705, 713, 714, 721, 722, 733,
796, 810–813, 819–822, 826, 827, 834–838, 840–847,
849–852, 855, 856, 880, 891, 894, 899–902, 905, 907,
912, 917–922
Alder endo rule 407, 417, 439
Alder-ene-reactions 501, 502, 504, 515, 796, 838, 844,
848–851, 1054, 1056–1057
– of unactivated alkynes and alkenes 1056
aldol and crotonalization reactions 146–148, 514
aliphatic alkylation 1055
alkanes, dehydrogenation of 897
alkenes
– enantioselective carbomagnesiation 1140
– heterogeneous catalysts for 892–894
– homogeneous catalysts for 894–897
– hydroacyclation of 1064
– hydroarylation of 1057–1060
– hydrocyanation of 1066–1067
– hydroformylation of 1034
– hydrosilylation 909–910
– intermolecular hydroacylation of 1064, 1068
– isomerization 848
– metallacarbation 1055
– metathesis 1126–1131
– Pd(II)-mediated oxidative carbonylations 1042–1043
alkene–silver cation complex 210
1-alkenylallenyl silyl ethers 352, 353
alkenylbenzocyclobutenes 1112
alkenyl cation intermediates 659–660
5-alkenylcyclohexa-1,3-dienes 361
alkenylidenecyclopropanes 1102
alkenyl mechanism 1031, 1032
1-alkoxy-3-acyloxy-1,3-dienes 419
1-alkoxyalkyllithium 460
1-alkoxy- and 1-halogenophospholes 137
1-alkoxy-1,3-bis(silyloxy)-1,3-butadienes 411
alkoxy radicals 69, 72, 75, 690, 1123
alkoxy-substituted aldehydes 845
alkyl ??-D-glucopyranosides 143
alkylaluminum halides 848
alkyl arylaminoacetate 649
alkyl aryloxyacetate 649
alkylate technology 1055
alkylation, of alkanes 1054–1056
alkyl azides 662
alkyl disubstituted silylene 448
alkyl halides
– photolysis of 654–657
– reduction of 906–907
alkylidene carbenes 384, 461, 630
alkylidene-2H-pyran (E) 359
2-alkylideneoxetane 375
alkyl iodides 10, 24, 63, 66, 68, 654, 861, 874, 1136,
1142, 1151, 1156, 1181
alkylithium 380, 1136
alkyl mechanism 1031, 1032
alkyl/peroxyl 1,4-diradical 696, 705
3-alkyl-3-phenyl-3H-diazirines 653
alkyl-substituted alkenes 15, 17, 54, 66, 85, 86, 278, 314,
624, 626, 700
alkyl-substituted alkynes 55, 56, 67, 630
alkyl-substituted 1,2-dioxetane 732
alkylzinc reagents, addition of 1142–1143
alkyne/alkene cross-metathesis 1130, 1132
alkynes
– Cu2+-catalyzed oxidative homocoupling of 1117
– heterogeneous catalysts for 892–894
– hydroacylation of 1064
– hydroarylation of 1060Index 1319
– hydrocyanation of 1066–1067
– hydroformylation of 1038
– hydrogenation, homogeneous catalysts for 894–897
– hydrogenation of 897–899
– metathesis 889–890, 1133–1134
– oxidative aminoalkylation of 1123–1124
– palladium-catalyzed hydroalkenylation of 1063
– polymerization 887–890
– Ru-catalyzed (2+2)-cycloadditions of 1080
– silylformylation 1039–1041
– Zr-catalyzed ethylalumination 1144
– Zr-catalyzed methylalumination 1144
allenamides 433, 670, 671, 1104
allene–alkene intermediates 430
allene cycloaddition 372–373
allowed ??(CO) ? ?? *(CO) transition 620
allowed thermal [??4c] electrocyclization 632
allowed transitions 619
allylcyclopropane 669
allylic alcohol 153, 197, 209, 210, 213, 224, 226, 359,
382, 408, 470, 472, 483, 491, 505, 702, 703, 845, 892,
900, 901, 1076, 1118, 1169
allylic alkylation 211, 240, 1168–1171
allylic boron compounds 845
allylic cations 76, 79, 279, 490, 1103, 1104
allylic hydroperoxides 505, 688, 697, 700, 702, 703
allylic hydroxy group 685
allylic 1,3-strain 126
allyl methyl thioether into methyl (E)-prop-2-en-1-yl
thioether 133
allyl/peroxyl diradical 696, 697, 705
allyl ??-molecular orbitals 282
allyl (prop-2-enyl) ethers 133
allylsilanes synthetic 843
??,???-dibromoketones 432
??-amino acids 213
??-arylation of carbonyl compounds and nitriles 1187
??,??-epoxyketones 153
??,??-unsaturated aldehydes 60, 67, 414
??,??-unsaturated carbonyl compounds 60, 130, 414,
628, 642
??,??-unsaturated nitriles 40, 62, 86, 392, 682
??-chlorocyclohexanone 431
(–)-??-cuprarenone 376
??-cuprarenone/??-cycloeliminations 886
??-diazocarbonyl compounds 653
??-diazocarboxamides 653
??-diazoketones 654
??-eliminations 654
??-epimerization 638
??-halogenation of ketones 33
??-iminocarbonitriles 197
??-iminocycloalkanecarbonitriles 197
??-insertion/??-eliminations 870, 880, 883
??-ionone 153
??-ketoaziridines 716
??-ketoepoxides 716
??-methoxydibenzyl ketone 431
??-methylbenzyl azide 662
??-pyridones 64, 137, 1097
??-pyrones 289, 391, 1097, 1102
??-santonin 615
??-silyl stabilized carbanions 385
??-stannylated thionocarbamates, alkynylation of 1161
ambimodal transition states 703
amines 713
– and carboxylic acids 807, 810
1-aminoadamantane 662
amino-alcohols 427, 802
aminoalkyl radical 69, 70, 719, 721, 724, 1123, 1124
2-amino-, 4-aminophenones 649
aminoarenethiolate 925
2-aminodiene 414, 828
5-aminopenta-2,4-dienal 646
aminophenols 513, 667, 925
3-aminophthalate salt 730
ammonium detergents 114
amphoteric compounds 798, 800, 802
1,2- and 1,4-dihydroarenes 724
1,2-, 1,3- and 1,4-dimethylbenzene 729
2-, 4-, and 5-methylpyrimidines 647
1,2,3- and 1,2,4-triphenyltrichlorobenzene 429
Anelli–Montanari protocol 918
anharmonicity 49, 192
anhydride formation 12
anilines 28, 35, 36, 62, 88, 89, 237, 239, 415, 649, 661,
667, 803, 813, 852, 1060, 1182, 1184
annulation reaction 1081, 1115, 1189
annulenes 132, 144, 299–301, 366
anodic oxidation of N-aminophthalimide 441
antarafacial [??6a+??2s]-cheletropic additions 445
antarafacial/suprafacial [?? 4a+??2s]-cycloaddition 367
anthelmintic (toxic) drug 695
anthracene-9,10-dicarbonitrile (DCA) 691, 707, 716
anthracenemagnesium 1136
anti-AIDS 217
antiaromatic cyclopentadienone 615
antiaromaticity 27, 36, 109, 113, 131, 144, 271, 284,
286–288, 292, 306, 311, 354
antibonding MO 276, 278, 284, 287, 298, 313, 624, 859,
863
anti-Bredt alkenes 125
anti-flu 215
anti-Markovnikov hydrosilylations 909
anti-Markovnikov products 921, 1145
antimicrobial agents 1052
7-anti-norbornenyl acetate 408
antiperiplanar conformation 2351320 Index
antiperiplanar conformers 115
anti stereoisomers 427
anti-stereotriads 419
(+)-Aphanamol I 1106
appearance potential or appearance energy AP(A+) 20
arene- and heteroaromatic diazonium salts 660
areneboronic acids, decabonylative coupling of 1163
arenecarbonitrile 62, 86, 719
arenediazonium anthracenesulfonates 661
arenediazonium salts 660–661, 721, 1168, 1172
arene hydrogenation 892–894
arenepolynitriles 724
arene radical cation intermediates 677, 710, 1119
arenes and heteroarenes
– alkenylation of 1060–1062
– alkylation of 1057–1060
arenesulfonanilides 649
argentoazomethine ylide 426
aromatic compounds 56, 66, 67, 86, 130, 131, 136, 149,
154, 620, 688, 692, 724, 733, 893, 895, 918, 1119
aromatic electrophilic substitutions 715, 866,
1184–1186
aromaticity 130, 136, 283, 292, 298, 305, 324
– of benzene 130, 132, 294
– of cycloaddition transition structure 366
– of transition states in cyclobutene/butadiene
electrocyclizations 346
aromaticity/antiaromaticity 27, 286
aromatic oxalic esters 734
aromatic stabilization energy (ASE) 131, 136–138, 283,
292, 294, 298, 324, 356
– benzene 56, 130, 294
– of heterocyclic compounds 136, 305
aromatic thiones 687
aroyl-??-cyclodextrins 629
Arrhenius activation energies 188, 347, 696
Arrhenius equation 188
aryl and alkenyl halides, solution photochemistry of
657–659
arylation of arenes(heteroarenes) 1182
arylboronates 1145
aryl carbamates 649
aryl chlorides 10, 63, 1048
– catalytic dehalogenation of 906
– Pd-catalyzed aminocarbonylation 1048
– trifluoromethylation of 1167
aryldiazenyl radical 660
aryldiazonium salt 721, 1168, 1172
2-aryl-4,5-diphenylimidazoles 729
arylimines 376, 414, 415, 687, 828, 1083
aryl iodides 10, 63, 715, 716, 875, 923, 925, 1048, 1050,
1142, 1155, 1157, 1162, 1167, 1168, 1171, 1178–1181,
1187
aryliodonium ylides 1076
aryl ketones 640, 707
arylnitrenes 663, 665
arylnitrenyl 659
3-aryl-2-oxazolines 686
aryloxyacetones 649
(arylphosphine)copper(I) halides 671
aryl radical 36, 69, 657, 660, 721, 796, 1120, 1151
aryl-substituted alkenes 56, 79, 86, 626
(±)-ascaridole 695
ascorbic acid 87, 716, 717
associative mechanism 190, 192, 193, 195, 196, 201,
236, 452, 479, 485, 869, 872, 873
associative processes 190
asymmetric alkene + ketene cycloaddition 376
asymmetric alkene metathesis 1131
asymmetric alkylfluoration 1142
asymmetric carboalumination 1144
asymmetric carbomagnesiation 1141
asymmetric catalytic dihydrogenation 214, 228, 899,
901
asymmetric conjugate additions 47, 814, 1138, 1139,
1144, 1147
asymmetric cyclopropanation 437, 1073–1075
asymmetric diastereoselective propargylations 1069
asymmetric Hosomi–Sakurai reaction 844
asymmetric intramolecular enolate arylations 1188
asymmetric Mannich-type reaction 815
asymmetric organocatalysis 834
asymmetric Reformatsky reaction 218, 219
asymmetric synthesis
– autocatalysis 228–229
– catalytic desymmetrization, achiral compounds
220–226
– definition 206
– deracemization 46, 212–215
– enantiomerically pure natural compounds 42, 44–46,
215–217
– Kiliani–Fischer aldose chain elongation method 206
– kinetic resolution 206–211
– nonlinear effects 226–229
– parallel kinetic resolution 211–212
– recoverable chiral auxiliaries 217–220
asymmetric version, of cyclopropanation 1078
asynchronous transition structures 374, 391, 392–394,
403, 405, 416, 418, 484
atomic orbitals (AO) 272–277, 342, 368, 369, 469, 859
atorvastatin 223
atropisomerism 1,3-dienes and diaryl compounds,
129–130
atroposelectivity 1165
autocatalysis 45, 221, 228–229
auto-oxidation of lophine 729
average heat of reaction 3
average nuclear frequency factor 711
Avogadro constant 4, 5Index 1321
Avogadro’s number 4, 188
2-aza and 1-azabicyclo[2.2.0]hexa-2,5-dienes 646
2-azabicyclo[2.2.0]hex-5-ene 646
6-azabicyclo[3.1.0]hex-3-en-2-exo-ol 647
6-azabicyclo[3.1.0]hexenyl cation intermediate 646
2-azabornane 456
1-azacyclohepta-1,2,4,6-tetraene 662
aza-Diels–Alder reaction 414, 828, 829
1-aza-1,3-dienes 415, 852
aza-di-??-methane 687
aza-di-??-rearrangement 687
1-azahepta-1,3,5,6-tetraenes 359
aza-ortho-xylydenes 445
aza-prismanes 646
azaruthenabicyclo[3.2.0]heptatriene 1099
azepins 358
azicemicins 440
azides, photolysis of 662–664
1-azidoadamantane 662
azidoalcohols 208, 440
azidopyridines 664
azinomycins 440
aziridination by (2+1)-cheletropic addition of nitrenes
440–442
aziridines 355, 356, 440, 441, 473, 663, 705–707, 905,
1050–1053, 1075, 1081, 1104, 1105, 1177
– carbonylation of 1052
azoles 64, 85, 88, 90, 136, 138, 648, 825, 1184
azomethine ylides 355, 356, 436, 688, 705, 706, 1107
azulene 132, 299, 358, 1059
B
back electron transfer 624, 626, 671, 696, 710, 711, 733
Back strain (B-strain) 23, 25, 109, 113, 117
B?ckvall’s ruthenium catalyst 213
Baeyer strain 118–120, 122, 125, 126, 197, 298, 301
Baeyer–Villiger oxidation 225, 240, 407, 408, 796
Baker’s yeast 222, 796
Balz–Schiemann reaction 660
banana bond (?? bonds) 126, 127, 129, 133, 318, 319,
322, 323
barrelene 144, 313, 633
– derivative 398
– effect 144, 313
base-catalyzed hydrolysis of esters 202
bathochromic shift 618
Bayer strain (angle strain) 118
Beer–Lambert law 616, 624
Beller’s reductive carbonylation, of aryl and heteroaryl
bromides 1049
Bell–Evans–Polanyi (BEP) theory 14, 38, 217, 231, 235,
347, 348, 393, 397–400, 411, 412, 418, 487, 488, 651,
711, 724, 815, 879
bench-stable compounds 1155
Benson’s group additivity method 9, 110
benzaldehyde 69, 146, 221, 222, 234, 411, 413, 494, 623,
637, 641, 662, 666, 681, 683, 686, 709, 710, 819, 820,
838, 842, 845, 847, 915, 920, 1064, 1065, 1069, 1137
benzazirine 662
benzene 10, 16, 29, 56, 69, 85, 86, 130, 294, 620, 644,
677, 1096
– aromatic stabilization energy (ASE) 294
– Dewar 117, 137, 287, 347, 429, 644–646, 670,
728–729
– direct photo-oxidation of 709
– Hückel method 294
– photoisomerization of 644–646
– thermal isomerization of Dewar benzene into
728–729
benzene-1,3-diyl diradical 36, 205
benzene-1,4-diyl diradical 36
benzenesulfonylnitrene 665
benzene-1,2,4,5-tetracarbonitrile 721, 724
benzo[b]bicyclo[4.1.0]hepta-2,4-diene 358
benzo[c]cycloheptatriene 358
benzocyclobutenes 56, 153–155, 348, 349, 397, 434,
442, 1097, 1112, 1189
benzoic acid 61, 87, 89, 800, 810, 812, 914, 915, 1116
benzoin condensation 819–821, 1029
benzonitrile 62, 659, 666, 667, 1060
benzophenone 86, 622, 623, 640, 656, 662, 671, 682,
685, 692, 706, 721, 725, 1137
benzophenone O-oxide 706
3,3?,4,4?-benzophenonetetracarboxylic dianhydride
671
benzothiazol-2-yl sulfones 385
benzvalene 56, 429, 644–646, 729
1-(benzylamino)adamantane 662
1-benzyl-1,4-dihydronicotinamide 725
benzyl-protected exoglycal 446
Bergman rearrangement 36, 205–206
Bertrand’s carbene 439
Bertrand’s phosphinosilylcarbene 439
??-anomers 143
??-arylketones 640
??,??-trehalose (??-D-glucopyranosyl-(1?1?)-
??-D-glucopyranose) 446
??-bromohydroperoxide 704
??-carotene 28, 694
??-chloroalkyl radicals 457
3??-cholestanol 124
(–)-??-citronellol 703
??-cycloeliminations 890, 891
??-cycloinsertions 890, 891
??,??-unsaturated iminium triflate 687
??,??-unsaturated ketones 130, 643
??-haloalkyl radicals 656
??-hydroxyacetal 10531322 Index
??-hydroxy and ??-aminoketones 716
??-hydroxy carbonyl compounds 146
betaine/lithium salt complexes 382
betaines 380, 382, 433, 435
??-insertion/??-elimination 871, 883, 886
?? -ketosulfones 715
??-lactams 64, 373, 376–379, 687, 796, 823, 828, 830,
1052, 1190
??-lactones 373, 496, 823, 855, 1050, 1081
??-naphthols
– enantioselective oxidative homocoupling 1120
– oxidative cross-coupling of 1120
??-naphthylamine, oxidative cross-coupling of 1120
??-pinene 215, 669
??-silicon effect 320, 350, 403
??-silylalcoholates 385
??-silyl effect 320, 1157
??-silyloxyaldehydes 1053
??-stannyl effect 320, 1157
??-sultine 430
biaryl catalyst 208, 210, 211, 214, 228, 353, 377, 408,
413, 416, 426, 517, 525, 720, 818, 845, 848, 850, 926,
1038, 1047, 1051, 1075, 1078, 1079, 1081, 1102, 1163,
1165, 1167, 1188
biaryl products 47, 56, 129, 131, 731, 1119, 1121, 1151,
1183
bicyclic azocines 1110
bicyclic 1,4-dienes 671
bicyclo[1.1.0]butanes 631, 632
bicyclo[4.1.0]hepta-2,4-dienes 358
bicyclo[4.1.0]hepta-2,4-dien-7-one 358
bicyclo[2.2.1]hept-2-ene double bond 315
bicyclo[3.2.0]hept-6-ene gives
(Z,Z)-cyclohepta-1,3-diene 347
bicyclo[2.2.0]hexa-2,5-diene 347
bicyclo[2.1.1]hexane 669
bicyclo[2.2.0]hexane 669
bicyclo[2.1.1]hex-2-ene 465
bicyclo[2.2.0]hex-1(4)-ene 370
bicyclo[2.2.0]hex-2-ene 347
bicyclo[3.1.0]hex-2-ene 465
bicyclo[3.1.0]hex-3-en-2-ones 644
bicyclo[3.1.0]hex-3-en-2-yl cation 466
bicyclo[n.2.0]alkenes 347
bicyclo[4.3.0]non-1-ene 631
bicyclo[4.2.0]octa-2,4-dienes 361
bicyclo[4.2.0]octa-2,4,7-triene 633
bicyclo[4.2.0]oct-7-ene 632
bicyclo[2.1.0]pent-2-ene 347
Bielawski’s diaminocarbene[3]ferrocenophane 439
bifunctional catalyst 229, 811, 814, 850, 1060, 1114
Bigeleisen treatment 233
bimolecular diffusion rate constant 623
bimolecular photophysical processes 623–626
bimolecular reactions 179, 181, 485, 667, 710, 724, 734,
797
BINAP 208, 1106, 1146, 1176, 1188
binding energy 146, 815
BINOL 227, 525, 814, 827, 845, 1113, 1120
biocatalysts 223, 225, 234, 809
bioluminescence (BL) 727, 734
– firefly 734–735
– oxygenation of electron-rich organic compounds
729–731
– peroxylate chemiluminescence 734
– thermal fragmentation of 1,2-dioxetanes 732–734
– thermal isomerization of Dewar benzene into
benzene 728–729
bioluminescent imaging (BLI) 735
biomass 912, 1029, 1030, 1038, 1126
bipyramidal transition state 237
bis(diazirine) 653
1,2-bis(chloromethyl)benzene 656
1,3-bis(chloromethyl)benzene 656
1,4-bis(chloromethyl)benzene 656
1,3-bis(t-butyl)bicyclo[1.1.0]butane 632
2,3-bis(t-butyl)butadiene 632
1,3-, 1,6-, and 2,7-bis(chloromethyl)naphthalenes 656
bisenone 712
bishomoaromaticity
– in bishomotropylium ions 311–312
– in neutral semibullvalene derivatives 312–313
bishomoaromatic stabilization energy 293, 311
bishomobenzene derivative 312
bishomocyclopentadienyl anions 292–294
bishomotropylium ions 311–312
1,4-bishomotropylium ions 311
bis[(methoxy)dimethyl]disilane 448
bis(2,4,6-trichlorophenyl) oxalate 734
bisphenol A (2,2-di(4-hydroxyphenyl)propane) 707
bis(diazomethyl)silane 653
4,5-bis(2-oxazolinyl)-(2,7-tert-butyl-9,9-dimethyl)-9Hxanthenes 426
bite angle 875, 879, 1048, 1059, 1064–1066, 1170
blood-brain barrier 43
blue luminescence 728
boat-like transition structure 481, 488, 494, 840
Boche’s kinetic measurements 355
Bode’s asymmetric synthesis 823
Bode’s enantioselective synthesis 415
Boltzmann constant 4, 178, 188
Boltzmann–Planck equation 5
Boltzmann relationship 4, 616
bond-coupled electron transfer (BCET) 671
bond dissociation energies 1, 4, 22–24, 38, 49, 68–75,
146, 193, 231, 288, 416, 868
bond dissociation enthalpies 23, 36, 868
bond lengths 66–67, 117Index 1323
bonding MO 275, 278, 280, 326, 624, 859, 860
bond lengths, sulfides 117
bond stretching anharmonicity 49
Born–Haber cycles 9, 28
Born–Oppenheimer approximation 272, 626
Bouveault–Blanc reduction 902
BP Chemicals 1033
branched alkenes 17
Brassard-type diene 851
Bredt’s rule 125–126
Breit’s diphosphine ligands 1037
Breslow intermediate 722
Breslow’s mechanism 820
bridged annulenes 300
bromonium ions 859
Br?nsted acid-mediated Nazarov cyclization 353
(1,2)-Brook rearrangement 462, 821
Bucherer–Bergs reaction 212
Büchner reaction 358
Buchwald–Hartwig reactions 923, 926–927, 1148
bulky ester derivatives 1074
bulky
3,3,4,4,5,5-hexamethyl-1,2-dimethylidenecyclopentane
434
bulky Lewis acid catalysts 452
bullvalene 206
butadiene 15, 17, 55, 85, 86, 128, 151, 285, 340, 346,
370, 388, 619, 1091, 1108, 1110, 1113–1114
butadiene ? bicyclo[1.1.0]butane 633
buta-1,3-diene 127
butadiene + ethylene ? hex-5-ene-1,4-diyl diradical
411
butadiene hydrocyanation mechanism 1066
C
cacodyl oxide 1135
Cahn–Ingold–Prelog (CIP) rule 41, 42, 222
calorimetry 1, 9, 24, 117, 287, 628
cantharidin 203, 387
CaO
2•(H2O2)2 692
carbaldehydes, synthesis of 1049
carbanion PhMe
2C– 31
carbanions 30–32, 34, 46, 310, 320–322, 354, 356, 384,
385, 457, 459, 460, 462, 618, 860, 861, 1054, 1169–1171
carbazole 667
carbene limiting structure 648
carbene mechanism 1127, 1128
carbenemetal complexes 373, 1076
carbenes 9, 32, 39, 109, 339, 362, 384, 437, 439,
447–451, 461, 507, 652, 655, 706, 805, 819, 821, 822,
858, 861, 866, 870, 880, 1029, 1030, 1065, 1087, 1101,
1107
carbenium ions
– clock 702
– hyperconjugation in 320
– intermediates 658
– (1,2)-sigmatropic rearrangement of 451–455
carboalumination 1143
carbon-heteroatom multiple bonds, hydroarylation of
1062, 1115
carbonitriles 39, 430, 483, 508, 727, 810, 861, 862, 926,
1062, 1066, 1091, 1151, 1152, 1187
carbon monoxide 442
– carbaldehydes 1049–1050
– carboxylic derivatives 1047–1049
– Fischer–Tropsch reactions 1030–1032
– hydroformylation and silylformylation 1053
– hydroformylation of alkenes 1034–1038
– Pauson–Khand reaction 1043–1047
– Reppe carbonylations 1041–1042
– silylformylation 1039–1041
carbonylations
– of ??,??-unsaturated imines 1087
– of aryl arenesulfonates and mesylates 1048
– of epoxides and aziridines 1050–1053
– of halides 1047
– of methanol 1032–1034
– Pd(II)-mediated oxidative 1042–1043
– Reppe carbonylations 1041
carbonyl compounds reduction 681, 907, 908
carbonyl–ene reactions 196, 201, 846, 847, 1137
carbonyl oxides 706
carbonyl ylides 355, 356, 430
carboxylic derivatives, synthesis of 1047
carboxylic esters 12, 39, 304, 524, 804, 830, 892, 908,
922, 1058, 1083, 1139, 1151, 1155, 1187
carboxypeptidase A 807
Carroll reaction 383
Carr–Parrinello method 143
carvone camphor 669
Cassar–Dieck–Heck alkynylation 1180
Castro’s reagent 808
catalysis through photo-oxidation 717–721
catalysis through photoreduction 711–715, 796
catalysts, of (Z)-stereoselective alkene metatheses 1130
catalytic asymmetric cyclopropanations 437, 1074
catalytic asymmetric nitroso-Diels–Alder reaction 416
catalytic cycles, for iridium-catalyzed methanol
carbonylation 1034
catalytic enantioselective synthesis 221
catalytic hydrogenation 891, 892
– of arenes and heteroarenes 899
– of carbon dioxide 903–904
– of carboxylic acids 902–903
– of ketones and aldehydes 899–902
– of nitriles and imines 904–905
– their esters and amides 902–903
catalytic hydrogenation of alkenes 891–8971324 Index
catalytic hydrogenation of alkynes into alkenes 897
catalytic oxidations with molecular oxygen 911–922
catalyzed asymmetric Diels–Alder reaction 408
catalyzed asymmetric Nazarov cyclizations 353
catalyzed hydrocarbation, of unsaturated compounds
1054
Catellani cascade reaction 1183
CativaTM 1033
C
2-axis of symmetry 344
C—C bond forming reactions 660, 818–858, 869, 921,
922, 1029–1191
C–chalcogen bonds 906
CC single bonds, hydrogenolysis of 910, 911
CF
3 substituents 373
chair ? chair interconversion 119
chair-shape 1,2-dimethylidenecyclohexane 397
C–halogen bonds 906
change in enthalpy/heat of reaction 2
change in entropy/reaction entropy 3
charge transfer absorption 624
charge transfer complex 624, 626, 678, 684, 685, 698,
712, 733
charge transfer configuration 38, 39, 217, 393, 394, 398,
399, 458, 479, 504
C–H bond, methane 111
chelation-assisted hydroarylations 1058
(2+1)-cheletropic addition 450
(4+1)-cheletropic addition 417, 444, 450
cheletropic elimination 314, 361, 437, 442–446, 449,
662
cheletropic reactions 665
– aziridination by (2+1)-cheletropic addition of
nitrenes 440–442
– cyclopropanation by (2+1)-cheletropic reaction of
carbenes 437–440
– decarbonylation of cyclic ketones by cheletropic
elimination 442–444
– of heavier congeners of carbenes and nitrenes
447–451
– sulfur dioxide 444–447
chemical conversion 40
chemically initiated electron-exchange luminescence
(CIEEL) 733
chemical quenching 694
chemiluminescence (CL) 692, 727, 914
– firefly 734–735
– oxygenation of electron-rich organic compounds
729–731
– peroxylate chemiluminescence 734
– thermal fragmentation of 1,2-dioxetanes 732–734
– thermal isomerization of Dewar benzene into benzene
728–729
chemoselectivity 154, 203, 204, 372, 405, 417, 434, 472,
669, 670, 680, 802, 898, 900, 905, 1109, 1116, 1190
Chevron process 1125
chiral acid 42, 44, 214, 494
chiral acid catalyst 229, 353, 372, 407, 408, 413, 414,
426, 437, 475, 480, 481, 483, 507, 517, 525, 804, 816,
818, 843, 844, 847, 850, 854, 1062
chiral amplification 44, 221
chiral anion phase-transfer (CAPT) 818
chiral auxiliary 41, 45–47, 217–219, 221, 407, 408, 419,
520, 521, 725
chiral base 44, 45, 49, 207, 212, 217, 218, 378, 493, 503,
725, 1158
chiral base catalyst 209, 215, 224, 229, 386, 428, 516,
699, 803, 805, 827
chiral cobalt(II) complex 426
chiral diaminocarbene catalyst 379, 415, 723, 806, 822,
823, 829, 831, 1152
chiral diene ligand 1146
chirality transfer 45, 375–377, 470, 473, 495, 629, 855
chiral menthyloxyfuranone 724
chiral oxazolidinethiones 218
chiral photochemistry 629
chiral surfaces 44, 45
chiral tertiary amines 428
2-chloroallyl cation intermediate 352
3-chloro-3-isopropyldiazirine 652
2-(chloromethyl)benzyl radical 656
chlorophyll 692, 727
chloroprene 389, 390
3-chloro-3-propyldiazirine 652
C—H nucleophiles 1148
chromatographic separation methods 43
Chugaev method 152
chymotrypsin 806
cis- and trans-1,2-diaryloxiranes 706
cis- and trans-2,2-diphenyl-3,4-dimethyldioxetane 682
cis- and trans-9-oxabicyclo[6.1.0]nonane 703
cis- and trans-2-phenylcyclopentyl chloride 658
cis-bicyclo[3.2.0]hept-6-en-2-one 347
cis,cis-1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic
acid 671
cis-cyclopent-4-ene-1,3-diol 696
cis-cyclopropanes 439
cis-1,2-diarylethylenes 636
cis-1,2-dideuterioacrylonitrile 370
cis-diepoxides 699
cis-3,4-dimethylcyclobutene 347, 632
cis-5,6-dimethylcyclohexa-1,3-diene 357
cis-2,5-dimethylcyclopent-3-enone 443
cis-3,5-diphenyl-1,2,4-dioxazolidine 706
1,2-cis-disubstituted ??-lactams 376
cis-1,2-dithienylethylenes 636
cis-1,2-divinylcyclobutane 369, 434, 676, 1109
cis-effect 317, 701, 702
C-isotrehalose 446, 447Index 1325
cis rule 388
cis-1,2,5,6-tetrachloro-3,4,7,8-tetraphenyltricyclo
[4.2.0.02,5]octa-3,7-diene 429
cis-1,2,3,4-tetramethylcyclobutene 341
13C-labeled bromoalkene 461
Claisen-type products 686
C-linked disaccharide 447
Coates’ mechanism, of epoxide carbonylation 1051
Co
2(CO)8-catalyzed hydroformylation, of epoxides
1053
CO
2 fixation 805, 1083
collisional efficiencies 30
collision-induced dissociation: CID 33
collisions with jets 32
combinatorial ligand library generation 1037
common ion effect 460
competitive inhibition 186, 187, 813
competitive radical and ionic reactions 654
concentrations of products 2
concerted and synchronous [??2s+??2s]-cycloaddition
363
concerted anionic suprafacial (1,2)-sigmatropic
rearrangement 460
concerted asynchronous mechanisms 391, 414, 418,
855
concerted (4+2)-cycloaddition 413
concerted Diels–Alder reactions 390–398
concerted pericyclic reactions 339, 515
concerted [??2s+??2a]-cycloadditions 374
concerted reactions 38, 39, 231, 271, 347, 398, 411, 632,
668, 848
concerted suprafacial (1,2)-methyl sigmatropic
rearrangement 456
concurrent E/Z isomerization, of carbonyl ylides 356
condensation of tannins 148
conformational anomeric effects 109, 113, 141–144,
841
conglomerates 43, 44
Conia-ene reaction 1056, 1057
conical intersection 626, 635
conjugate base 24, 30, 134, 220, 235, 237, 293, 311, 321,
385, 658, 717, 734, 801, 810, 824, 842, 1053, 1054,
1168, 1186
conjugated cyclohexenones 642
conjugated dienes 14, 153, 305, 387, 397, 411, 431, 435,
437, 444, 448, 467, 469, 630–633, 688, 696, 697, 824,
1042, 1076
– and diynes 127–129
conjugation stabilization energy 127–139, 285
conjugation, with a triple C?C bond 28
conrotatory C—C ring opening of the oxirane 356
conrotatory electrocyclic reactions 345, 347, 355
conrotatory mode 340–342, 354–356, 631
conrotatory [??4C] isomerization 340–353
conrotatory 8?? electron cyclization 360
consecutive irreversible reactions 184, 185
contrasteric effects 141, 143, 348, 406, 699, 702
coordinating solvents 1159
Cope rearrangement 18, 51, 195, 196, 203, 206, 312,
339, 369, 434, 451, 476, 484–490, 492, 676, 679, 680,
833
copper(I)acetylide 1094
copper carbenoid 1084
copper-catalyzed carbene transfer 437
Corey–Chaykovsky reaction 225
Corey’s general synthesis of prostaglandins 407
corner-cutting tunneling effect 233
corner-protonated cyclopropane 452–454, 457, 859
cosensitizer 716, 717
Cossee’s mechanism 883, 884, 886
coulombic potential energy 39, 394, 710
Coulomb integral 275, 278, 302, 362
Coulomb’s law 37
Coulson approach
– hydrogen molecule 275–276
– hydrogenoid molecules, PMO theroy 276–277
coumarin/polyene-type organic dyes 727
cross-conjugated dienones 643
crossed cycloadducts 670
crossed [??2+??2]-cycloaddition 669
cross-enyne metathesis 1131
cross-metathesis, of 3-hexyne with nitriles 1134
(±)-crotepoxide 699
crotyl double bond 844
crowded silylenes 448
crystalline spirophosphorane 382
cubane 124, 671, 672, 891
Cu(I)-catalyzed azide/alkyne cyclocondensation
(CuAAC) 427
Cu-catalyzed Mirozoki–Heck coupling 1178
CuCl
2 reoxidizing agent 1043
Curtin–Hammett principle 190–192, 212
C
2v symmetrical cyclic four-electron transition structure
438
9-cyanoanthracene 680
cyanobenzoate (S) 684, 685
1-cyano-2,3-diphenylcyclopropylithium 355
3-cyano-1-methylquinolium perchlorate 709
1-cyanonaphthalene 678
cyclic ??-diazoketones 653
cyclic ??-conjugation 283
cyclic product 361
cycloaddents 40, 41, 361, 366–368, 371, 374, 379, 390,
393–395, 397–400, 406, 409, 410, 416, 420, 427, 430,
433, 434, 668, 850, 851, 853, 1078, 1079, 1090–1096,
1102, 1103, 1105, 1107, 1111, 1112
cycloaddition 15, 17, 197, 216, 361, 667, 1070
1,8-cycloaddition 6791326 Index
(2+1)-cycloaddition 1072–1077
(2+2)-cycloaddition 202, 240, 370, 372, 373, 375, 376,
379, 388–390, 629, 633, 667, 668, 674, 677, 682–687,
703–705, 712, 713, 719, 720, 731, 732, 828, 830, 832,
853, 886, 890
– of singlet oxygen 704
(2+2+1)-cycloaddition 1043, 1047, 1081, 1089–1090
(2+2+2)-cycloaddition 430, 679, 1096, 1099–1101
(2+2+2+2)-cycloaddition 1111–1112
(3+1)-cycloaddition 1080–1082
(3+2)-cycloaddition 354–356, 420, 428, 677–679, 715,
828, 830, 831, 833, 855, 1079, 1081–1087
(3+2+1)-cycloaddition 1102, 1103
(3+3)-cycloaddition 856, 1101–1102
(4+1)-cycloaddition 449, 826, 1087–1089
(4+2)-cycloaddition 137, 202, 387, 388, 392, 411, 413,
434, 677, 686, 697, 698, 805, 828, 1109
(4+2+2)-cycloaddition 1109, 1110
(4+3)-cycloaddition 431, 432, 1103–1105
(4+4)-cycloaddition 434, 679, 680, 1109
(5+2)-cycloaddition 433, 436, 857, 1105–1108
(5+2+1)-cycloaddition 1112
(5+4)-cycloaddition 435, 436
(6+2)-cycloaddition 435, 1110, 1111, 1115
(6+3)-cycloaddition 436
(m+n)-cycloaddition 361, 402, 434–437
(n+1)-cycloaddition 437
cycloadditions and cycloreversions
– allene cycloaddition 372–373
– aromaticity 366–368
– cheletropic elimination 361
– concerted Diels–Alder reactions 391–392
– (m+n)-cycloadditions 361, 402, 434–437
– 1,3-dipolar 420–428
– diradicaloid model 392–396
– 1,4-diradical/zwitterion intermediates or diradicaloid
transition structures 368–372
– hetero-Diels–Alder reactions 411–420
– ketenes and keteniminium salts 373–384
– Longuet–Higgins model 362–364
– noncatalyzed (4+3)- and (5+2)-cycloadditions
431–434
– olefinations analogous to Wittig reaction 384–386
– ??-facial selectivity of Diels–Alder reactions 408–411
– regioselectivity of Diels–Alder reactions 399–406
– sharpless asymmetric dihydroxylation of alkenes
428–431
– stereoselectivity of Diels–Alder reactions 406–408
– structural effects on the Diels–Alder reactivity
397–399
– thermal (2+2+2)-cycloadditions 428–431
– thermal higher order (m+n)-cycloadditions 434–437
– Wittig olefination 380–384
– Woodward–Hoffmann rules 364–366
cycloadduct 366
1,3-cycloadducts 672
(4+3)-cycloadducts 442
(4+4)-cycloadducts 434, 680
(6+2)-cycloadducts 435
cycloalkenes, ring strain 125
cyclobutadiene
– antiaromatic destabilization energy 287, 288
– argon matrix isolation of 289
– four ??-MOs of 287
– gas-phase standard heat formation of 288, 289
– geometries of 288–291
– hemicarcerand 287, 289
– Pettit’s experiments 288
– photochemical generation of 288
– PMO diagram 287
– proton affinity of 288
– structure of 290
– total ?? energy of 287
cyclobuta-1,3-dione 374, 375
cyclobutane 8, 36, 55, 118–119, 124, 125, 288, 296, 322,
323, 340, 362–365, 368, 372, 375, 389, 395, 464, 488,
668, 676, 911, 1111
cyclobutane pyrimidine dimers 685
cyclobutanone 60, 86, 90, 373–375, 639, 640, 911, 1071
cyclobutene 36, 55, 79, 85, 125, 137, 288, 296, 340–350,
354, 368, 371, 617, 628, 631–633, 669, 848, 1088
cyclobutene-3,4-diyl dication 296, 298
cyclobutenyl zwitterion 308
cyclobutyleniminium adduct 379
cyclodecane 123
cyclodimerization 36, 154, 197, 287, 368–370, 372, 375,
387–390, 429, 434, 502, 635, 672, 676, 683, 831, 832,
1092, 1099, 1100, 1111, 1112
cycloheptadecane 123
cycloheptane 122, 123, 311
cycloheptatriene 358, 435
cyclohepta-2,4,6-trien-1-one 358
cycloheptatrienyl cation 298, 310
cyclohexa-2,4- and 2,5-dienones 650
cyclohexa-1,3-diene 55, 85, 128, 132, 305, 315, 323,
342, 357, 390, 397, 414, 499, 619, 635, 677, 681, 695,
696, 718, 831, 832, 1114
cyclohexa-1,4-diene 55, 85
cyclohexadienyl anion 238, 724
cyclohexadienyl cation 29, 81, 466
cyclohexadienyl radical 27, 75, 467, 657
cyclohexadienone 649, 650
cyclohexa-2,4-dienones 643
cyclohexa-2,5-dienones 643, 644
cyclohexadienyl anion 310, 922, 923, 926, 1134, 1180
cyclohexane
– chair ? chair interconversion 119
– monosubstituted cyclohexanes 121Index 1327
– planar cyclohexane 120
– twist-boat conformer 119
cyclohexanecarbonitrile 143
cyclohexane-1,4-dione 121
cyclohexanol 125, 141, 191, 192, 900, 912, 914, 917, 918
cyclohexanones 60, 90, 121–122, 350
cyclohexene 7, 15, 55, 122, 125–127, 131, 132, 134, 136,
144, 197, 201, 239, 292, 311, 313, 315, 366, 387, 388,
392, 395, 411, 632, 826, 849, 886, 894, 917, 1038, 1064,
1119
– Pd(II)-catalyzed allylic acetoxylation of 1119
cyclononane 122, 123
cyclononyne 630
cycloocta-1,4-diene 55, 359, 672
cycloocta-1,5-diene 55, 369, 434, 629, 669, 676, 1114,
1145
cyclooctane 55, 122, 123, 912
cyclooctatetraene 55, 298–303, 308, 633, 865, 891,
1092, 1111, 1112
cycloocta-1,3,5-trienes 55, 361
cyclooct-2-enol 703
cyclopentadiene 55, 136, 138, 145, 292, 297, 305, 311,
315, 373, 387, 388, 392, 397, 406–409, 416, 433–435,
467, 469, 499, 670, 676, 696, 852, 887–889, 1113, 1127
cyclopentadienones 615
cyclopentadienyl anion 292–295, 297–299
cyclopentadienylcarbene 645
cyclopentadienylmethyl radical 467
cyclopentadienyl systems 291
cyclopentane 26, 27, 55, 118–120, 124, 125, 132, 136,
194, 280, 292, 828, 867, 897, 911, 1149
cyclopentanone 60, 86, 90, 134, 637, 638
cyclopentene 26, 27, 55, 125, 132, 134, 280, 282, 315,
456, 463, 628, 658, 678, 681, 830, 1129, 1132, 1149
cyclopent-3-ene-1,2-dione 444
cyclopent-2-enone 397, 674, 675
cyclopent-3-enone 443, 444
cyclopent-1-en-1-yl and cyclohex-1-en-1-yl cation 660
cyclopentenyl cation intermediate 352
([(cyclopent-3-en-2-yl)-1-yl]methyl diradical) 465
cyclopentylethyne 630
cyclopropanation by (2+1)-cheletropic reaction of
carbenes 437–440
cyclopropane 55, 67, 68, 76, 83, 85, 322
cyclopropene 27, 55, 67, 85, 125, 502, 504, 628, 630,
631, 647
cyclopropene-3-carbaldehyde 647, 648
cyclopropenyl systems 282
1-cyclopropyl-1-alkyl radicals 403
cyclopropyl cations 76, 83, 352, 356, 396
1-cyclopropyl-1,3-dienes 1112
cyclopropylmethyl cation 77, 79, 83, 322, 702
cyclopropylmethyl/homoallyl radical rearrangement
373, 682
cyclopropylmethyl radical 70, 194, 374, 458, 702, 913
cyclopropyl vs. cyclobutyl substituent effect 322–324
cyclotetradecane 123
cyclotrimerization of t-butylfluroroacetylene 429
cylohexene derivatives 210
cytochrome P450 911–914, 1123
D
Danishefsky diene 413
Dauben’s synthesis 203
daunomycinone 405
deBroglie wavelength 232
decacarbonyldimanganese 861
decahydronaphthalenes (cis- and trans-decalin) 124
decameric polyphenol 151
decamethylsilicocene 448
decarbonylation 639
– of cyclic ketones by cheletropic elimination 442–444
decomposition rate constants 733, 734
degree of chain branching 13–14
dehydrogenation, of methanol 1070
delocalization
– of allyl radical 26
– of benzyl radical 26
– of phenyloxy radical 26
– of spin by ??-conjugation 26
– of trityl radical 27
??-lactone 134, 199, 800
??-valerolactone 134
De Mayo reaction 673, 674, 853
density functional theory (DFT) 272, 839
deracemization 46–48, 212–215, 221, 795, 796
Dess–Martin periodinane 918
desulfinylative arylation of heteroaromatics 1183
desymmetrize meso-compounds 218
deuterioketene 375
deuterium isotope effects 51, 231, 306, 391, 392, 506,
507, 812, 820, 847, 921
deuterium KIE 239
2-deuterobicyclo[3.1.0]hex-2-ene 466
6-deuterocycloocta-1,3-diene 632
Dewar benzene 56, 117, 137, 287, 308, 347, 429,
644–646, 670, 728–729
Dewar–Chatt–Duncanson model 862
Dewar furan (5-oxabicyclo[2.1.0]pent-2-ene 647
Dewar theory 860
Dexter (or electron exchange) mechanism 625
D-fructose 185, 215, 795
DFT. See density functional theory (DFT)
D-glucopyranose 143
D-glucose 141–143, 177, 185, 215, 230, 795, 820
D-homoestrone 349
dialkylethylenes 17
dialkylthioketone S-methylides 4271328 Index
diamagnetic ring current 131, 308
diamidocarbene 439, 440
diaminoplumbylenes 450
diaminostannylenes 450
diarylnitrilimines 427
diastereoisomeric cation 455
diastereoisomeric cyanhydrines 206
diastereoisomeric monoacetals 218
diastereoisomeric products 41, 45, 212, 522
diastereoisomeric ratio 352, 426
diastereomeric oxazolidines 427
diastereomer ratio 684
diastereoselective transamidification 218
5,8-diazabenz[cd]azulene 358
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) 208, 798,
1050
1,2-diazenes 651–654, 661
diazide Mes*P(N3)2 450
9,9-diazido-9H-fluorene 666
diazines 646–647
diazirines 651–653
diazocamphor 654
diazo compounds 420, 437, 651–654, 706, 1073, 1076,
1085
diazodicarboxylic esters 653
diazomethane 420, 424, 446, 652, 653, 1075
dibenzobarrelene derivative 634
dibenzosemibullvalene derivative 634
9,10-dichloroanthracene 680
1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD) 712
1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE)
712
dichlorocyclopropane derivative 352
1,4-dichloro-2,3-diphenylcyclobutadiene 429
3,6-dichloroocta-1,7-diene-3,6-diyl diradical
intermediates 390
3,6-dichloroocta-1,7-diene-3,6-diyl radicals 390
2,4-dichlorophenoxyacetic acid 707
1,1,-dichloro-2-propylcyclpropane 438
dicopper silicotungstate 1117
5,10-dicyanoanthracene 705, 706
1,4-dicyanobenzene 679, 831, 833
8,8-dicyanoheptafulvene 436
1,4-dicyanonaphthalene 679
didehydrogenation of ethyl acetate 134
didehydrogenative C—C coupling reactions
– alkane metathesis 1125–1126
– alkene metathesis 1126–1131
– alkyne metathesis 1133–1134
– enyne metathesis 1131–1133
– Glaser–Hay reaction 1116–1117
– oxidative alkyne coupling 1116
– oxidative aminoalkylation of alkynes 1123–1124
– oxidative aryl/aryl cross-coupling reactions
1121–1122
– oxidative aryl/aryl homocoupling reactions
1119–1120
– oxidative cross-coupling reactions 1117–1119
– TEMPO-co-catalyzed oxidative 1122–1123
1,4-dideuteriobutadiene 368
1,1-dideuterioisoprene 391
4,4-dideuterioisoprene 391
di(adamant-1-yl)-1,2-diazene 662
Diels–Alder addition 367
– of butadiene to ethylene 17
– intramolecular 199–201, 203, 204, 1092, 1093
Diels–Alder adduct 137, 154, 218, 287, 832, 849
Diels–Alder cycloaddition 138, 203
Diels–Alder cycloadduct 4-vinylcyclohexene 676
Diels–Alder reactions 15, 138, 203, 288, 366, 615, 849,
850, 1091
– concerted mechanism for 387–391
– hetero 15, 339, 387, 391, 402, 404, 411–420, 430, 450,
507, 712, 796, 828, 829, 849–853
– with inverse electronic demand 393
– with normal electronic demand 393
– ??-facial selectivity of 408–411
– regioselectivity of 399–406
– of singlet oxygen 695–700
– stereoselectivity of 406–408
Diels–Alder reactivity 137, 397–399
1,3-dienes 14, 55, 85, 129–130, 154, 285, 350, 373, 389,
397, 411, 413, 417, 434, 436, 449, 472, 505, 631, 632,
680, 695, 849, 853, 1056, 1063, 1065, 1069, 1070, 1081,
1087, 1089, 1091, 1092, 1103, 1104, 1131, 1143, 1146,
1147
1,4-dienes 14, 55, 85, 633–634
dienophiles 17, 40, 203, 204, 218, 387, 399, 1091
1,2-di(9-anthryl)ethanol 680
diethyl azodicarboxylic diester 387
diethylzinc 432, 1135
di(trifluoromethyl)ethyne 648
differential and integrated rate laws
– competitive vs. non-competitive inhibition 186–187
– consecutive irreversible reactions 184
– consecutive reactions 184–185
– heterogeneous catalysts 187–188
– Michaelis–Menten kinetics 185–186
– molecularity and reaction mechanisms 179–181
– order of reactions 178–179
– parallel reactions 183
– reversible reactions 182–183
– steady-state approximation 183–184
– zero order reactions 181–182
dihalomethanes 655
dihydro- and tetrahydropyran derivatives 411
dihydroazepines 1107Index 1329
2,5-dihydroazoles 133
3,6-dihydro-1,2-dioxin 697
9,10-dihydro-9,10-ethanoanthracenes
(dibenzobicyclo[2.2.2]octa-2,5-diene) 391
2,3-dihydrofuran 683
dihydrogen 8, 275, 860, 863–865, 891
dihydrogenation
– of anthracene 132
– of tetracene 132
1,4-dihydro-2H-pyran 15
3,4-dihydro-2H-pyran 412
2,3-dihydro isomers 133
9,10-dihydro-10-methylacridine 715
3,6-dihydro-oxathiin-2-oxides 417
3,6-dihydro-1,2-oxazines 415
4,5-dihydrooxepine 356
1,1-dihydroperoxide 694
1,2-dihydrophthalic anhydride 391
3,4-dihydropyran-2-ones 415
5,6-dihydropyran-4-ones 413
1,4-dihydropyridine 716
5,12-dihydrotetracene 132
2,5-dihydrothiophene-1,1,-dioxides 417
1,2-diiodoalkanes 656
diisopropyl acetylenedicarboxylate 634
1,2-diketones 686
4,4’-dimethoxybenzophenone 725
dimethoxydimethylsilane 448
1,4-dimethoxynaphthalene (DMM) 716
1,1-dimethoxy-2-trimethylsilyloxyprop-2-ene 432
dimethyl acetal 656
4-dimethylaminopyridine (DMAP) 209, 211, 212, 214,
582, 795, 798, 802–804, 826, 919
1,3-dimethyl-6-azauracil 686
1,3-dimethylbenzene 678
2,3-dimethylbutadiene 373
2,3-dimethylbuta-2,3-diyl radical-cation 452
2,3-dimethylbutane 116
2,3-dimethylbut-2-ene 452, 453, 459
dimethyl cis-cyclobutene-3,4-dicarboxylate 340
1,6-dimethylcyclohexa-1,3-diene 358
1,4-dimethylcyclohexane isomers 124
2,2-dimethylcyclopropanone 442
dimethyl ?2-pyrazoline-3,5-dicarboxylate 420
dimethyl-Dewar-benzenes 729
dimethyl 2,3-dicyanofumarate 420
3,5-dimethyl-4,5-dihydroazole (a 2-pyrazoline) 360
2,2-dimethyl-3,4-dihydro-2H-pyran (butadiene +
acetone) 412
2,2-dimethyl-1,3-dioxolene 683
dimethylgermylene 449
7,7-dimethyl[2.2.1]hericene
(2,3,5,6-tetrakis(methylidene)-
7-isopropylidenebicyclo[2.2.1]heptane 446
2,5-dimethylhexa-2,4-diene 680
2,5-dimethylhexa-2,4-hexadiene 679
2,3-dimethylidenebicyclo[2.2.1]heptane 411, 620
7,8-dimethylidenebicyclo[2.2.2]octa-2,5-diene 398
1,2-dimethylidenecyclobutane 56, 296
3,4-dimethylidenecyclobutene 295
1,2-dimethylidenecyclohexane 418, 445, 620
1,2-dimethylidenecyclopropane 397
dimethylmercury preparation 1135
1,4-dimethylnaphthalene 698
2,4-dimethylpenta-1,3-diene 698
3,3-dimethylpenta-1,4-diene 446
dimethylperoxylactone 733
3,4-dimethyl-1-phenylphosphole 138
2,2-dimethylpropane (neopentane) 15
dimethylstannylene 449
dimethyl 3,4,5,6-tetrakis(tert-butyl)phthalate 117
dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate 395
dimethyl viologen 719
Dimroth principle 14, 347, 398, 651, 879
dinuclear complex 879
1,2:5,6-di-O-isopropylidene-D-mannitol 721
dioxadiazole 706
dioxa-ene reactions 688, 690, 700
1,4-dioxenes 686, 716
dioxetane 730
1,2-dioxetanes 688, 705, 729, 732
dioxetene 731
1,2-dioxetene 730
1,2-dioxyallyl cation intermediate 432
1,3-dioxy-substituted 1,3-dienes 411
9,10-diphenylanthracene (DPA) 728
diphenylcarbene 656
1,2-diphenylcyclobutadiene 289
1,2-diphenylcyclopropanes 706
1,1-diphenylethylene 684
9,10-diphenylethynylanthracene (DPEA) 728
2,3-diphenylindene oxide 706
diphenyliodonium salts 659
3-(diphenylmethylidene)-2-oxabicyclo[2.2.1]hept-5-ene
373
3,4-diphenyl-8-oxabicyclo[3.2.2]oct-6-en-3-one 431
2,3-diphenyloxiranes 706
1,3-diphenyl-2-oxyallyl cation intermediate 431
1,2-diphenyloxytetraphenylethane 456
diphenylpropanetrione 145
1,5-diphenyltetrazole 665
diphosphine ligand 1059
di-??-methane (DPM) 644
di-??-methane (Zimmerman) rearrangement of
1,4-dienes 633
1,3-dipolar cycloadditions 359, 705
dipolar cycloaddition to carbonyl compounds 426
1,4-dipolar cycloadduct 3731330 Index
dipolar cycloreversion 420
dipolarophile 420, 424, 425
1,3-dipoles/(3+2)-cycloadditions 420
diradical character 628
diradical intermediates 388, 633
1,2-diradical intermediate 193, 628
1,3-diradical intermediate 193, 465, 630, 633, 642–645,
652, 678
1,4-diradical intermediates 36, 205, 368, 370–374,
387–390, 435, 486, 638, 640, 644, 668–671, 673–677,
681, 682, 705
1,3-diradicaloid 438
diradicaloid model 383, 392, 409, 424, 443
1,2-diradicals 637
diradical structure of the 1,3-dipoles 424
1,4-diradical/zwitterion intermediates or diradicaloid
transition structures 368
diradical ? zwitterion intermediates or transition
structure 370
diradical ? zwitterion species 371
direct arylation, of indoles 1121
direct C—H bond arylation 661
direct C—H functionalization 1135
direct (2+2)-cycloaddition 890
directed C—H bond activation 1054
directed evolution 223
direct hydrocarbation reactions 1069
direct photo-oxidation, of benzene 709
direct propylene epoxidation 912
dirhodium tetraacetate 1074
displacement reactions
– ??-arylation of carbonyl compounds and nitriles 1187
– arylation of arenes(heteroarenes) 1182
– carbonylative Stille reaction 1157
– direct arylation and alkynylation of non-activated C-H
bonds 1189
– Hiyama cross-coupling 1166
– Kharash cross-coupling 1149
– Kumada–Tamao–Corriu (KTC) reaction 1149–1154
– Mizoroki–Heck coupling 1171
– Negishi cross-coupling 1154
– non-activated C—H bonds, direct alkylation of 1190
– Sonogashira–Hagihara cross-coupling 1179
– Stille cross-coupling reaction 1157
– Suzuki–Miyaura cross-coupling reaction 1161
– Tsuji–Trost reaction 1168
disrotatory mode 341
disrotatory [??4d] photoelectrocyclization 635
disrotatory ring opening 633
dissociative mechanisms 193, 235, 236
dissociative processes 190
distorted perepoxide 703
distorted ??
2(diene) MO 408
1,4-disubstituted butadiene 444
1,2-disubstituted cyclobutanes 369
2,3-disubstituted cyclopropyl carbanions 354
1,4-disubtituted triazoles 427
disymmetric 1,3-dienes 411
disymmetric dienophiles 411
di(2-pyridyl)-1,2,4,5-tetrazine 395
1,3-dithiolanes 427
divalent silicon species 447
(+)-2,3-divinyloxirane 356
1,3-diyne derivatives 1117
D-mannose-derived dienophile 417
D-mannose-derived nitroso compound 416
DMPA 804
DNA lesions 685
dodecahedrane 124, 640, 642
dodecanethiol 637
donor ability 409
donor–acceptor absorption 624
Dunitz–Schomaker strain 118
dye-sensitized solar cells (DSSC) 710, 726–727
dynamic kinetic resolution 46, 212–215, 516, 795
1,2-dyotropic rearrangement 453, 489, 496, 497
E (E
)-1-alkoxy-, 1-trialkylsilyloxy-, 1-aryl-, 1-alkythio-,
1-alkylseleno- and 1-cyclopropyl-1,3-butadiene 417
(E)- and (Z)-methyl 3-methylbut-2-enoate 439
(E)- and (Z)-penta-1,3-diene 619
(E)- and (Z)-2-phenyl-1-propenyl(phenyl) iodonium
tetrafluoroborate 659–660
(E)-azobenzene 629
(E)-bromostyrene ((E)-PhCH=CHBr) 659
(E)-but-2-ene as alkene 54, 458
eclipsed conformer 129, 322, 323
(E)-cycloalkenes 55, 125, 628, 629, 632
(E)-cycloheptene 628
(E)-cyclohexene 628
(E)-cyclooctene 125, 628, 703
(E)-1-deuteriochloroprene 390
(E)-1,2-dialkylethylenes 314, 383
(E)-1,2-dideuterioethylene 420
(E)-1,3-dimethoxybutadiene 400
(E)-1-dimethylamino-3-silyloxy-1,3-dienes 411
(E,E)-1,4-dideuteriobutadiene 341
(E,E)-3,4-dimethylhexa-2,4-diene 341, 347
(E,E)-1,4-diphenylbutadiene 449
(E,E)-1,4-diphenyl- and (E,E)-1,4-dimethoxybutadiene
394
(E,E)-, (E,Z)-, and (Z,Z)-2,4-dimethylhexa-2,4-diene
697
(E,E)-, (E,Z)-, and (Z,Z)-hexa-2,4- diene 632
(E,E)-hexa-2,4-diene 619, 632
(E,E)-octa-2,6-dien-1,8-diyl diradical intermediate 389
(E,E)-octa-1,7-dien-3,6-diyl diradical 369Index 1331
(E,E)-octa-1,7-diene-3,6-diyl diradical 676
(E,E)-4-trimethylsilylbutadien-1-acetate 404
eight-electron electrocyclic reactions 360
electrical discharge 694
electrochemical reactions 836
electrocyclic interconversions, of cyclohexa-1,3-dienes
and hexa-1,3,5-trienes 635
electrocyclic reactions
– aromaticity of transition states in
cyclobutene/butadiene electrocyclizations 346–347
– eight-electron 360–361
– Hückel type of orbital arrays 340
– Longuet–Higgins correlation of electronic
configurations 342–345
– M?bius type of orbital arrays 340
– Nazarov cyclizations 350–354
– six-electron 357–360
– stereochemistry of thermal cyclobutene-butadiene
isomerization 340–342
– thermal cyclobutene-butadiene isomerization
340–342
– thermal openings of three-membered ring systems
354–357
– torquoselectivity of cyclobutene 347–350
– Woodward–Hoffmann simplification 345–346
electrocyclization 117, 348, 352, 359, 631, 645
1,5-electrocyclization 359, 360
1,8-electrocyclization 361
electrofugacity 315, 320, 409
electron-accepting sensitizers 711
electron affinity (EA) 21, 28, 412, 624, 710, 815, 837,
1135
electron correlation 13, 273
electron-donating sensitizers 711
electronegativity 10–12, 18, 26, 29, 30, 37–39, 140, 141,
272, 302, 317, 458, 658, 858, 861, 1175
electronically excited ethylene 730
electronic configurations 271, 339, 340, 342–345,
364–366, 393, 631, 858
electronic destabilization 144, 286–288, 301, 313, 367
electronic energy 272, 342, 344, 615
electronic stabilization, of transition structure 367
electronic transitions 616–620, 624
electronic transmission coefficient 711
electron-poor alkenes 629, 675, 682, 683, 724, 825, 826,
853, 896, 1069, 1160, 1172, 1175
electron-poor dipolarophiles 424
electron-releasing imidazolin-2-imido ligand 1133
electron-rich alkenes 372, 414, 415, 439, 665, 674, 675,
681, 682, 688, 700, 704, 705, 718, 724, 819, 834, 853,
896, 1076, 1085, 1175, 1176, 1178
electron-rich aminoalkyl radical 724
electron-rich dialkenylketones 353
electron-rich diphosphine ligands 1048
electron-rich dipolarophiles 424
electron-rich transition metal 874, 877, 1091
18-electron rule 858
electron spin resonance (ESR) 23, 194, 319, 450, 653
electron-transfer chain 915, 916
electron transfer equilibria, heat formation
– of carbenes 32–33
– of diradicals 33
– of neutral, transient compounds 32
electron transfer experiments 288
electron-transfer mechanism 914
electron-withdrawing alkoxide ligands 1133
electrophilic additions 33, 316, 1054
electrophilic dipoles 424
electrophilic oxygen center 637
electrophilic transition metal complexes 1091
electrostatic destabilization effect 145
electrostatic interactions 25, 113, 121, 143, 317, 406,
678
electrostatic repulsions/attractions 117
elementary processes 177, 797, 798
elementary reactions 177, 182–184, 193
elementary steps 177, 179
enals 130, 437, 451, 821–823, 849, 857, 1038, 1067
enamines 13, 133, 379, 380, 516, 705, 831, 832,
834–836, 853, 855, 892, 1105, 1169, 1175
enantiomerically enriched alcohol 203, 462
enantiomerically enriched chiral allene 376
enantiomerically enriched glyoxaxate 683
enantiomerically enriched ketone 637
enantiomerically enriched products 473, 713
enantiomerically enriched silyl carbinol 462
enantiomerically enriched
trans-1,2-dideuteriocyclopropane 357
enantiomerically pure ??-lactams 378
enantiomerically pure carbene 722
enantiomerically pure chiral compounds 206
enantiomerically pure chiral cyanobenzoate 684
enantiomerically pure chiral N-heterocyclic carbene
379
enantiomerically pure derivatives 379
enantiomerically pure diaminocarbene 415, 828, 1188
enantiomerically pure diaryl ketone 725
enantiomerically pure diazaaluminolidine 408
enantiomerically pure ligand (S)-segphos 416
enantiomerically pure sensitizer 629
enantiomerically pure thiourea derivative 352
enantiomeric purity 45, 211, 213, 214, 416, 491
enantiomeric ratio 45, 212, 228
enantiopure dirhodium catalysts 1104
enantioselective and regioselective hydromethylation
1070
enantioselective catalyzed 1,3-dipolar cycloadditions
4261332 Index
enantioselective cyclization 1059
enantioselective (2+2)-cycloaddition of dichloroketene
376
enantioselective cyclopropanation 437, 1075, 1076
enantioselective didehydrogenation 210
enantioselective epoxidation 210, 224, 225, 227, 703
enantioselective esterification 209, 795
enantioselective homo-Diels–Alder reactions 1100
enantioselective hydrolysis 207, 208, 212, 493, 647, 795
enantioselective intermolecular hydropyridination
1059
enantioselective intramolecular
(2+2)-photo-cycloadditions 671
enantioselective oxidative ??-acylation of amines with
aldehydes 722
enantioselective [??4+??2+??2]-cycloadditions 1109
enantioselective ring-closing alkene metathesis 210,
795
enantioselective ring-closing olefin metathesis 1131
enantioselective synthesis 43, 221, 407, 408, 415, 472,
479, 493, 503, 511, 629, 818, 835, 846, 852, 1073, 1110
enantioselectivity 207, 220, 223, 426, 455, 473, 480,
481, 508, 516, 517, 813, 830, 848, 874, 1067, 1075,
1139, 1143, 1170
endergonic reaction 2, 372, 429
6-endo-acetoxy-7-exo-d-bicyclo[3.2.0]hept-2-ene 464
endo- and exo-meta-cycloadducts 678
endo- and exo-oxetane 683
endo bidentate ligand 1079
endo-cycloadducts 406
2,6-endo-dideuterobicyclo[3.1.0]hex-3-en-2-yl cation
466
endo ester 407
endo-, exo-dicyclopentadiene 677
endoperoxides 132, 688, 695–700, 729
enecarbamates 705
ene-reactions 127, 240, 430, 500–526, 704, 846–848,
1029, 1054, 1056, 1134, 1147
energy of concert 195, 234, 340, 345, 388, 485
energy states of physical system 271
energy transfer 623–626, 693, 710, 728, 734
enhanced polarizability 624
enlarged fullerenes 359
enones and dienones 642–644
enthalpy diagram, for homolysis 23
entrainment method 44
entropy
– of cyclization 151, 194
– of reaction 2–4, 7, 19, 23, 109, 149, 196, 515, 517, 689
– synthetic tool
– – Chugaev method 152
– – Eschenmoser–Tanabe fragmentation 152, 153
– – pyrolysis of esters 151, 152
– – thermal 1,4-eliminations 153–156
enyne bond reorganization 888
enyne metathesis 887–889, 1126, 1131–1133
enzymatic deracemization 212, 213
enzyme-catalyzed acyl transfers 806–807
enzyme-catalyzed reactions 234, 914
(E)-1-phenyl- and (E)-1-methoxybutadiene 394
(E)-2-phenylnitroethylene 392
epi-cantharidin 203
epoxides
– carbonylation 1051–1052
– Co
2(CO)8-catalyzed hydroformylation of 1053
– hydroformylation of 1053
– silylformylation of 1053
epoxyalcohol 703
epoxylactones 699
4-, 5-equatorial position 127
equilibrium constant 2, 3, 7, 9, 13, 19, 21–24, 28–30,
32, 36, 40, 41, 49, 52, 114, 143, 146–148, 152, 182, 186,
187, 190, 238, 358, 368, 487, 627, 795, 807, 874, 875,
895, 1050, 1174
equilibrium isotope effect (EIE) 49–51
equilibrium shifts 40–41
equivalent three-center species 1103
ergosterine 695
ergosterol 635, 695
Eschenmoser–Tanabe fragmentation 152, 153
esomeprazole 224
esterases 207, 795
ester hydrolysis
– catalyzed 807
– esterification 798, 799
esterification and ester hydrolysis 798–799
esterification equilibrium 12
(E)-stilbene 56, 131, 355, 618, 619, 623, 627, 628, 635
estratrienone synthesis 1097
Et
2AlCl/TiCl4-catalyzed cyclotrimerization, of butadiene
1114
ethyl benzyl sulfide 709
ethyl diazoacetate 358
ethylene hydrogenation 892
ethylene polymerization 910
ethylenetetracarbonitrile 370, 397
1,1-ethylidenecyclohexadienyl radical quantum
calculations 458
ethylithium 1136
3-ethyl-3-methylcyclobutene 347
1-ethyl-3-methylimidazolium hexafluorophosphate
372
2-ethyl-2-methyl-1-phenylcyclobutanol 640
2-ethylthioaniline 662
ethyl 3-tosylprop-1-ene-2-carboxylate 716
(E)-1-trimethylsilylbutadiene 403
(E)-1-trimethylsilyloxybutadiene 404
Evans’ oxazolidinones 218Index 1333
Evans’ rule 366
Evans–Sj?gren reaction 378
Exaltone® 153, 197
excimers 624, 667, 732
exciplexes 624, 667, 680, 694
excited dimer 624
excited ketone 641, 681, 682
1(n,??*) excited state 639, 643
exergonic reaction 2, 7, 40, 689
2-exo-acetoxy-3-exo-acetoxy-7-exo-d-bicyclo[2.2.1]
hept-5-ene 464
exocyclic diene 55, 295, 316, 397, 405, 696
5-exo, 6-exo-dideutero-2,3-diazanorborn-2-ene 651
exothermic cyclohexadienone 650
exothermicity 7, 10, 15–17, 136, 139, 144, 145, 217,
235, 314, 347, 368, 375, 387, 388, 398–400, 412, 424,
473, 499, 504, 505, 517, 695, 728, 731, 732, 815, 879
exo-trig cyclization 194
expectation value of the energy 273
extinction coefficient 616, 617, 619
Eyring activation free energy 189
Eyring’s absolute rate theory 233
Eyring’s theory 188
(E,Z)-cycloocta-1,3-diene 619
(E,Z)-cycloocta-1,5-diene 629
(E,Z)-3,4-dimethylhexa-2,4-diene 341
(E,Z)-1,3-diphenyl-2-azaallyllithium (E,Z), 355
(E,Z,E)-octa-2,4,6-triene 357, 445
F
Favorskii rearrangement 431
felbinac 1164
fermentation 221
Fermi hole 623
ficellomycin 440
firefly bioluminescence 734–735
first-order rate law 179
Fischer complexes 1087
Fischer projection 42
Fischer–Rosanoff convention 42
Fischer’s carbene complexes 888
five-center cycloaddents 1105
five-membered ring heteroaromatic compounds,
photolysis of 647
flash high-vacuum pyrolysis 152
flash-vacuum pyrolysis 34
Fleming-Tamao oxidation 1039
fluorescence and phosphorescence 620
fluorine 11
forbidden electrocyclic ring opening 466
forbidden n(CO) $rightarrow$ $pi$*(CO) transition
620
forbidden transitions 619
formation of zwitterionic intermediates 376
formic acid (HCOOH) 18, 60, 1069
formic esters 1047
formose reaction 820
F?rster mechanism 624, 625
four-carbon cycloaddents 1111
four electron conrotatory electrocyclizations 350
four electron conrotatory mode 340
four-electron electrocyclic reactions 340
four-electron M?bius strip 354
four-electron sub-HOMO(diene)/HOMO(dienophile)
interaction 367, 368
four-valence bonds of carbon atom 271
FR-900482 440
fragmentation 7, 639
Franck–Condon contours 20, 616
Franck–Condon principle 20, 617, 622, 626
free energy 1
free enthalpy 1, 2, 121, 129, 308, 393, 499
frequency factor 188, 711
frontier molecular orbital (FMO) 339, 863
– Fukui’s theory 399
– interaction energies 424
– theory 339
front-strain (F-strain) 23, 25, 109, 113, 116, 117, 126,
372, 448
Frost circles, annulenes 298
Fujiwara alkyne hydroarylation 1060, 1061
Fujiwara–Moritani arylations 1117
Fukui’s FMO theory 399
fullerene 117, 359, 397, 692
fulleroids 359
fulvene 56, 297–298
fulvene-derived enamine 435
furan-2,3-dione 444
(+)-fusicoauritone 350
G ??
-butyrolactone 64, 134
??-methylidene-??-valerolactones 1103
gas phase
– acidities 30–32, 82–88, 294
– homolysis and radical combination 22–24, 192–193
– isomerizations 193–194
– photochemistry of acetone 638
– proton affinity 29
gauche effects 16, 126, 318, 459, 510
gauche interactions 113, 382
gear effect 113
gem-diazides 651
gem-disubstitution 199
geminal diazides 665
geminal disubstitution 139–141, 198
generated chiral oxazolidinone-stabilized oxyallyl
intermediates 4331334 Index
geometrical deformations 113
germacyclopent-3-enes 450
germylenes 450
Gibbs energy of reaction 1
Gibbs free energy 2
Gibbs–Helmholtz equation 3
Gilman reagent 836
Glaser–Hay reaction 1116
glycerophospholipids 114
gold-catalyzed enyne rearrangements 1078
gold-catalyzed intramolecular 1086, 1093, 1094
gold nanoclusters 912
Gomberg–Bachmann reaction 660
Gr?tzel cell 726
Grignard reagents 520, 728, 818, 866, 1136–1142
Grob fragmentation 640
Grob mechanism 195, 196
Grotthuss–Draper law 615
Grubb’s catalysts 869
Grubbs ruthenium alkylidene catalysts 888
H
Haber–Weiss reaction 692
halides reductive carbonylation 1049
halocarbenes 32, 438
halogeno-2-oxyallyl cations 431
Hammett plot 1121, 1180, 1187
Hantzsch ester 214, 715, 716
Hartree–Fock (HF) scheme 273
Hartwig’s mechanisms, of oxidative additions 876
1H-azirine 667
HCo(CO)4 pivotal active catalyst 1035
1H-diazirine 667
3H-diazirine 651, 653
head-to-head cycloadduct 434, 674, 675
head-to-tail cycloadducts 674, 675, 1098
heat 2, 8, 14, 620
heat formation
– of diradicals 36–37
– of highly reactive cyclobutadiene 36
heat variation 3
Heilbronner–M?bius aromaticity 324–325, 368
[5]-helicene 635, 636
[6]-helicene 635, 636
heme-dependent monoxygenases 912, 913
hemicarcerand 287, 289
hepta-1,6-diene 669
heptafulvene 436
[2.2.2]hericene 398
Hess’s law 9
heteroarylcarbenes 664
heteroarylnitrenes 664
hetero-(6+3)-cycloadditions 436
hetero-Diels–Alder reactions 15, 339, 387, 391, 402,
404, 411–420, 413, 417, 430, 450, 507, 712, 796, 828,
829, 849–853
heterogeneous catalysts 187, 207, 795, 800, 801,
891–894, 900, 903–905, 1038, 1046, 1120, 1172
heterolytic bond dissociation enthalpies
– gas phase heterolytic bond dissociation enthalpies
28, 74–77
– thermochemistry of ions 29–32, 75–81
heterolytic dissociation enthalpy 74–77, 279–280, 292
hexacene 132
hexa-1,5-diene 55, 195, 476, 485, 669
hexafluoro-3-diazobutanone 654
hexamethylidenebicyclo[2.2.2]octane 398
hexa-1,3,5-trienes 635
hexoses 123, 141–143, 230, 447, 803, 852
3H-furan-2-one 444
higher order cycloadditions 434
higher reactivity of cyclobutenone 397
highest occupied molecular orbital (HOMO) 12, 278,
372, 618, 838, 858, 859, 862, 863, 1054
highly asynchronous concerted (4+2)-cycloadditions
402
highly electrophilic dienophile ethylenetetracarbonitrile
(TCNE) 394
high octane number gasoline production 1055
(±)-hirsutene 674
Hiyama cross-coupling 1166–1168
Hiyama–Denmark coupling 1167
??-octanolactone 134
H
2O2 decomposition
– catalyzed by sodium molybdate 692
– with hypervalent iodine 692
Hoechst–Wacker process 920
hole-catalyzed cycloadditions 1091
hole-catalyzed reactions 831, 834
H
2O2 + MeCN 692
homoallylic alcohols 843, 847
homoaromatic carbanions 310
homoaromatic electronic stabilization 308, 311
homochiral catalyst 1079, 1139, 1140
homoconjugated enone 408, 643
homoconjugation
– barrelene effect 313–314
– bishomoaromaticity
– – in bishomotropylium ions 311–312
– – in neutral semibullvalene derivatives 312–313
– homoaromaticity 310
– – in cyclobutenyl cation 308
– – in cycloheptatriene 310–311
– – in homotropylium cation 308–310
homocyclopropenyl cation 308
homo-Diels–Alder reactions 390, 430, 1100
homogeneous methane conversion 1055Index 1335
HOMO(C2-diradical)/LUMO(ethylene) 346
homolysis assisted
– by bond breaking 195–197
– by bond formation 195
– and bond forming processes 195–197
homolytic bond dissociations
– BDE 22–24, 68–72, 74–75, 868
– substituent effects 25
Horner’s mechanism 1123
Horner–Wadsworth–Emmons reaction 380, 384, 385
Horner–Wittig reaction 380
Hoveyda’s asymmetric carbomagnesiation, of cyclic
allylic ethers 1141
Hückel and M?bius aromaticity 368
Hückel method
– allyl cation, radical and anion 279
– allyl ??-molecular orbitals 282
– annulenes 298
– ASE of heterocyclic compounds 305
– benzene and ASE 294
– bishomocyclopentadienyl anions 292
– cyclobutadiene
– – antiaromatic destabilization energy 288
– – argon matrix isolation of 289
– – four ??-MO’s of 287
– – gas phase standard heat of formation of 288, 289
– – geometries of 288
– – hemicarcerand 287, 289
– – Pettit’s generation of 288
– – photochemical generation of 288
– – PMO diagram 287
– – proton affinity of 288
– – structure of 286
– – total ?? energy of 287
– cyclooctatetraene 301
– cyclopentadienyl anion 292
– cyclopentadienyl systems 291
– 3,4-dimethylidenecyclobutene 295
– fulvene 297
– non-relativistic Schr?dinger equation 277
– pentadienyl system 291
– ??-molecular orbitals of ethylene 278
– ??-systems with heteroatoms 302
Hückel molecular orbitals (HMO) 277
Hückel system with two electrons 356
Hückel theory 132
Hückel type of orbital arrays 340
Huisgen cycloadditions 420
Hund’s rule of maximum multiplicity square 288
hydantoinases catalyze 212
hydrazides 730
hydride affinities 29, 32, 76, 77, 279, 280, 283, 291, 292,
320, 322, 402
hydride transfers 29, 30, 222, 234, 455, 480, 881, 900,
906, 908, 921, 1054
hydridoruthenium complex 897
hydroacylation, of alkenes and alkynes 1064
hydroalkenylation, of alkynes, alkenes and carbonyl
compounds 1062
hydroalkylation, of alkenes 1054
hydroalumination 1143
hydroarylation
– of alkenes 1057
– of alkynes 1060
– of carbon-heteroatom multiple bonds 1062
hydroformylation
– of alkenes 1034
– of alkynes 1038
– of epoxides 1053
hydrogenation, of indene 132
hydrogen atom abstraction 630
hydrogen atom transfer 637
(1,6)-hydrogen atom transfer 640
hydrogen atom transfers 631
hydrogen bonding 197, 213, 226, 236, 353, 404, 413,
507, 676, 806, 812–814, 816, 826, 837, 850, 893, 1037
hydrogen bromide 10, 53, 87, 89, 178
hydrogen molecule 8, 275, 860, 863–865, 891
hydrogen peroxide, with sodium hypochlorite 692
hydrolases 206
hydroperoxide 689, 922
hydroquinone 388
hydrosilylation 892
hydroxy radical 68–69
hydroxyalkyl radical 69, 724
hydroxyindanones synthesis 1112
hydroxylamine 663
2-hydroxy-1,4-naphthoquinone 708
5-hydroxy1,4-naphthoquinone 708
6-hydroxy-1,4-naphthoquinone 708
3-hydroxypyridium chloride 435
2-hydroxy-5-(t-butyl)phenone 649
hyperconjugation
– in acetyl halides 12
– in carbanions 320
– in carbenium ions 320
– in cyclopentadienes 315
– cyclopropyl vs. cyclobutyl substituent effect 322
– neutral, positive and negative 314
– non-planarity of bicyclo[2.2.1]hept-2-ene double bond
315
– in radicals 319
– stabilization 128
– theory 409
– unsaturated and saturated systems 317
hyperconjugative interactions 1441336 Index
hyperconjugative stabilization 25, 128, 130, 280, 314,
320, 409
hypervalent iodine compound 692
hypsochromic shift 618
I
ideal solutions 10
imidoylnitrene intermediate 667
imine 662
imine ene-reaction 847, 848
imines and related C=N double bonded compounds
686
iminium salts 379
2-imino- and 3-iminooxetanes 687
iminocarbenes 667
iminoketenes 666
independent-electron theory 273
indoles 476, 666, 719, 834
– Pd-catalyzed arylation of 1185
initial photo-heterolytic cleavage 659
initiated resolution 44
intermolecular Cannizzaro aldehyde disproportionation
455
intermolecular catalytic Pauson–Khand reaction 1043
intermolecular CIEEL process 733
intermolecular (2+2)-cycloaddition 362–365, 368–380,
672–676, 681–686, 704, 705, 718, 830–833, 836,
837–839, 853–855, 1078–1080
intermolecular Diels–Alder reaction 15, 17, 40, 156,
203, 204, 218, 366–367, 387–420, 430, 628, 676, 680,
695, 718, 829, 834, 849–853, 1090–1096
intermolecular photochemical [??2+??2]-cycloadditions
672
internuclear repulsion 275
intersystem crossing (ISC) 621, 622, 682
intramolecular Cannizzaro reaction 455
intramolecular CIEEL 733
intramolecular (2+2)-cycloaddition 633, 669–672, 713,
719, 720, 1080
intramolecular (6+2)-cycloaddition 435
intramolecular Diels–Alder addition 199–201, 203,
204, 641, 1092, 1093
intramolecular Diels–Alder reaction 405
intramolecular disproportionation 682
intramolecular ??-complexes 453
intramolecular propargylic ene-reactions 430
intrinsic barrier ?? 398
inverse electron-demand hetero-Diels–Alder reaction
414
inverse equilibrium deuterium isotopic effect 50
inverse Heck cross-coupling 1171
inverse kinetic isotopic effect 1060
inversion of configuration 1159
invertase 185
iodoarylnitrenes + N2 659
1-iodobicyclo[2.2.1]heptane 654
iodolactone 408
1-iodonorbornane 654
ion cyclotron resonance (ICR) techniques 29
ionization energy 12, 20–22, 85, 394–397, 831–834
– of cyclobutenyl radical 288
Ir(II) complex 719
iridium-catalyzed carbonyl-directed hydroarylation, of
monosubstituted alkenes 1058
iron-catalyzed hydrosilylations 892
Ir(ppy)2(dtbbpy)PF6 721
2-isobutyrylcyclohexanone 923
isocamphane 456
isodesmic equilibrium 128
isodesmic reactions 315
isodicyclopentadiene 410
isoenthalpic half-chair conformers 120
isolable diaminogermylenes 450
isolable vinylsilirane 448
isolobism formalism 860, 863
isomeric allene 630
isomeric anti-11-oxasesquinorbornene 410
isomeric cyclopentenones 350
isomeric exo-cycloadducts 406
isomeric 3H-diazirines 653
isomeric O-thionocarbamates 13
isomerization 133
– equilibria 13
– gas phase 193
isonitriles silylene 448
isoprene 55, 79, 85, 240, 387, 402–403, 420, 448
isopropanol 11, 13, 16, 59, 75, 87, 89, 901, 1069
3-isopropyl-3-methylcyclobutene 347
isotopic labeling 49–52, 193, 195, 205, 231–239, 346,
368, 389–392, 411, 418, 424, 444, 464–470, 485, 500,
503, 506, 652, 848, 865, 867, 874, 896, 1085, 1119, 1166
J
Jablonski diagram 623
Jahn–Teller distortions 301
Jencks–More O’Ferrall type 799
Jonas’ complex 1152
Josiphos ligands 1056
Julia–Lythgoe olefination 385
K
Kagan’s method 224
Kametani’s synthesis of (±)-homoestrone 349
Katsuki–Sharpless asymmetric epoxidation 226, 227,
703
Kékulé systems 37
Kemp’s triacid 671
ketene-enolates 379Index 1337
ketenes
– and imines 376
– and keteniminium salts 373
ketenimines 662, 663, 687
keteniminium salts 379
keto/enol tautomerism 33–36
2-keto-L-gulonic acid (2KGA) 230
ketones 15, 16, 20, 33, 47, 60, 74, 80, 83, 85, 86, 88, 90,
135, 147, 156, 198, 200, 201, 214, 222, 226, 229, 302,
385, 407, 412, 442, 452, 509, 515–524, 620, 637–641,
681–685, 732, 840, 901, 916
ketoreductases (KREDs) 223
Kharash cross-coupling 1149
Kiliani–Fischer aldose chain elongation method 206
kinetic deuterium isotopic effect 1119, 1121
kinetic isotope effects (KIE) 231–240, 418, 469, 506,
846, 848
– hydrogen transfers 231
– natural abundance 239
– nucleophilic substitution and elimination reactions
234
– steric effect on 239
– tunneling effects 232
kinetic resolution 46
– ??-arylalkanoic acids 209
– asymmetric epoxidation 210
– carboxylic acids 209
– chiral silver phosphate catalyst 210
– enantiomerically pure alkylidenemolybdenum catalyst
210
– enantiomerically pure chiral reagent 208
– enantiomeric compounds 207
– hydrolases 206, 207
– parallel 211
– racemic ammonium tartrate 206
– RCOOH and Me
3SiN3 208
– synthetic means 207
– unprotected ??-substituted ??-amino acids 210
kinetic secondary deuterium isotope effects 235, 240,
418, 1137
kinetics laws 178, 180
kinetic theory of ideal gases 188
Kirchhoff law 3
Koch carboxylic acid synthesis 1041
Koch–Haaf carbonylation 1030
Kohn’s density functional theory (DFT) 272
Kornblum–DeLaMare rearrangements 699
Kosover’s salt 721
Krische’s catalytic C—C bond formation 1067, 1068
Kumada–Tamao–Corriu (KTC) reaction 1149–1154
L
Lacour’s transfer catalyst 817
lactone 408
lactonizations 197, 198
l-??-aminoacids 43
Langmuir adsorption isotherm 187
Langmuir model 187
laser flash photolysis 656
law of mass action 177
LCAO–MO method 273
least motion principle 465
Le Châtelier principle 1, 152
Ledwith’s mechanism 832
Leighton’s intramolecular alkene silyl formylation 1040
L-enantiomer 43
leucoanthocyanidin condenses 149
Lewis acid-catalyzed 811, 837–842, 845–858
– allylborations 846
– (3+2)- and (3+3)-cycloadditions 855, 856
Lewis acid coordinates 402
Lewis acid-promoted (5+2)-cycloadditions 857, 858
Lewis base-catalyzed 811
Liebesking–Srogl reaction 1162
ligand exchange reactions 869, 873
Lindemann–Hinshelwood mechanism 179
Lindlar catalyst 892
linear combination of atomic orbitals (LCAO) method
273
linearly fused tricyclopentanoids 435
linear zigzag conformation 114
Lineweaver–Burk equation 186, 187
lithiated azomethine ylides 436
lithiated cis-2,3-diphenylaziridine 355
lithium alkoholate 460
Liu’s reductive carbonylation, of aryl iodide 1050
local C
3 symmetry 151
– of methyl groups 113
lone pair of electrons 355
long-chain polyketides 419
Longuet–Higgins approach 345
– hydrogen molecule 275
– hydrogenoid molecules, PMO theroy 276
Longuet–Higgins correlation
– and Abrahamson 365
– of electronic configurations 339, 342
Longuet–Higgins model 362, 668
Longuet–Higgins treatment 394
lophine 729
lowest unoccupied molecular orbital (LUMO) 278,
858, 859, 861, 863
low pressure oxo process 1035, 1036
luciferase 734
luminol 730
LUMO(ethylene)/HOMO(C2-diradical) 346
2,6-lutidine 431
lycopene 6201338 Index
M
macrocycloalkanones 198
macrolactonization 198
maduropeptin 440
Magnus–Pr?ncipe mechanism 1045
Maier’s synthesis 639
Malaprade oxidation of diols 408
malonodinitrile 62, 88, 139, 140
mandelic acid derivative 716
Mannich-type pathway 413
mannostatin A 646, 647
manual sorting of conglomerate 43
Marcus model 711
Marcus theory 802, 815
Mark?’s copper-catalyzed 919
Markovnikov’s rule 13–14
mass-moment of inertia 52
mass spectrometry (MS) 9, 20, 21, 24, 29, 30, 32, 33, 35,
82, 288, 450, 1045
matallacyclopentanes 890–891
maximum conversion 40, 184
mazdasantonin 643
McLafferty fragmentation 33, 34
McMurry olefination 674
Me-C(2) bond forming process 452
Me-C(3) bond breaking process 452
MeCN 233, 238, 661, 663, 692
Meerwein arylation of olefins 660
Meerwein–Ponndorf–Verley mechanism 900
Menschutkin reaction 235, 815
menthoxyaluminum dichloride 408
meso-diacetate 647
mesolysis 715
metal-assisted (3+3)-cycloaddition 1101
metalcarbenoids 1076
metal-carbon ylides 1076
metal electropositivity 859
metallacyclobutadiene 889–890
metallacyclobutenes 886–887, 1132
metallacycloheptadiene 1091, 1093
metallacyclohexane 1081
metallacyclopentadienes 890–891, 1098, 1112
metallacyclopentanes 890, 891, 1111
metallacyclopentenes 890–891, 1106, 1113
metalla-Dewar-benzene 890
metallated sulfones 385, 386
metallic carbon nucleophiles 1148
metallic surface-generated gas-phase radicals 1055
metallo-carbonyl-ene reactions 843–846
metallocyclobutane 886, 887
metastable compound 9, 10
metathesis
– alkene 210, 795, 886, 887, 1124–1134, 1125
– alkyne 889–891, 1124–1134
– enyne 887–889, 1126, 1131–1133
metathetical reaction 1124, 1125
methane 903, 916
– deshydrogenation 897
– steam reforming 897
methanol carbonylation 1033, 1034
methonium ion 78, 865
methoxy-axial conformer 143
1-methoxybutadiene 373
1-methoxycyclohexa-1,3-diene 404
5-methoxy-2-iodobenzeneborinic acid (MIBA) 809
2-methoxy-6-methoxycarbonylphenyl azide 663
methoxypropanone 133
3-methoxypropionitrile 726
6-methoxy-1-vinyl-3,4-dihydronaphthalene 411
methyl acetate 498, 619, 686, 1033
methyl acrylate 60, 400, 404, 407, 410, 420, 430, 507,
853, 890, 922
2-methylallyl (methallyl) hydroperoxide 690
2-methyl and 3-methylpentane 116
7-methyl and 7-trifluoromethyl substituted derivatives
632
6-methyl-6-azabicyclo[3.1.0]hex-3-en-2-exo-ol 646
2-methylbut-1-ene 54, 112
2-methylbut-2-ene 54, 112, 239, 456, 656, 681, 847
3-methylbut-1-ene 54, 126, 201, 239
methyl cinnamate formation 1043
6-methylcoumarin 676
4-methylcyclohexanone 121
2-methylcyclopent-2-enol 674
1-methylcyclopropene 125
methylcyclopropenyl cation 308
methylene (CH2) 111, 656, 864
9-methylfluorenyllithium 459
2-methylfuran 442, 648, 696, 1059
methyl Gilman reagent 836, 837
6-methylhept-6-ene-2-one 383
6-methylhept-5-en-2-one 383
2-methylidenebicyclo[3.1.0]hex-3-en-6-yl derivatives
465
3-methylidenecyclohexene 630
methylidenecyclopropane 125, 856, 1079, 1083–1085,
1103
methylidenecyclopropane cycloaddition 1084, 1085
9-methylidenefluorene 459
methylidene group [Cd-(Cd)(H)2] 112
3-methylidene-2H-furan-2-one 444
3-methylidenepropionolactone 374
methyl N-phenylsulfamate 665
1-methyl-5-oxabicyclo[2.1.0]pent-2-ene 648
2-methyl-5-oxabicyclo[2.1.0]pent-2-ene 648
3-methyl-3-phenoxybut-1-ene 650
3-methyl-3-phenyl-3H-diazirine 652
3-methyl-1-phenylphosphinacyclopent-3-ene 450Index 1339
2-methylpropene (isobutylene) 15
5-methyl-2-pyridinesulfonamide 441
methyl thio-ether 647
methyl vinyl ketone 8, 60, 130, 156, 240, 382, 402–406,
620, 824, 1059
Michael acceptors 674, 675, 814, 822–826, 853, 857,
1054, 1076, 1078, 1083, 1084, 1136, 1138–1140
Michael addition 137–139, 439, 803, 814, 824, 826, 828,
837, 839, 1029, 1054, 1094
Michaelis–Menten equation 186
Michaelis–Menten kinetics 185–186, 813
microscopic reversibility 182, 197, 234, 368, 411, 798,
878
Mikami ene-reaction 504, 847
Milas hydroxylation 428
miraziridine 440
mirror plane of symmetry 42, 119, 121, 284, 287,
293–295, 311, 312, 314, 322, 324, 342, 343, 362, 364,
366, 367, 408, 463, 466, 631
mitomycins 440
Mizoroki–Heck coupling 658, 1171–1179
M?bius aromatic character 361
M?bius aromaticity 324, 325, 346, 354, 356, 368, 374
M?bius arrays of atomic orbitals 368
M?bius twist 300
M?bius type of orbital arrays 340
modified Julia reaction 386
molar absorptivity 616
molar extinction coefficient 616, 617
molar heat capacity, at constant pressure 3
molecular orbital (MO) theory
– butadiene 285–286
– Coulson approach 274–277
– cyclopropenyl systems 282–285
– Heilbronner M?bius aromatic [N]annulenes
324–325
– homoconjugation 308–314
– Hückel method 277–305
– hyperconjugation
– – in carbanions 320–322
– – in carbenium ions 320
– – in cyclopentadienes 315
– – cyclopropyl vs. cyclobutyl substituent effect
322–324
– – neutral, positive and negative 314–315
– – non-planarity of bicyclo[2.2.1]hept-2-ene double
bond 315–316
– – in radicals 319–320
– – unsaturated and saturated systems 317–319
– Longuet–Higgins approach 274–277
– quantum chemistry 271–272
– Schr?dinger equation 272–274
molybdenum complexes 890
moment of inertia 6, 52, 113
mono and dialkyl substituted cyclobutadienes 632
monoatomics 5, 109, 193, 859
monobranched alkanes 112, 116
monocylic endoperoxide 699
monodeuterated 2,3-dimethylidenenorbornane 410
monodeuterated quadricyclane-1-d and
norbornadiene-2-d 430
monomeric thioaldehydes 427
mononuclear 861, 1038, 1153
monooxygenases 917
monosubstituted cyclohexanes 121
monosubstituted ketenes 374
Morimoto’s mechanism 914, 915
Morita–Baylis–Hillman (MBH) reaction 826–828,
1029
Morse potential energy 51, 192, 193, 275
MP2/6-31G* quantum mechanical calculations 443
Mukaiyama aldol condensation 413
Mukaiyama aldol reactions 523–525, 839–844, 842,
843
Mukaiyama–Mannich reaction 843
Mukaiyama reactions 841
Mulliken assumption 362
multiligand catalysts 226
myrcene 669, 850, 1069
N
3-N-acetylaminooxetane 683
N-acetylated endo and exo-(4+2)-cycloadducts 718
N-acylimines 686
N-(acyloxy)phthalimides 725
Nair’s synthesis 823
N-alkoxyphthalimide 713
N-alkyl substituted 2,3-diphenylaziridines 706
N-aminophthalimide 441
nanoparticles 726, 727, 892–894, 899, 903, 904, 912,
918, 919, 1046, 1047, 1117, 1147, 1148, 1153, 1164,
1172, 1180, 1182
naphthalene hydrogenation 132
naphthalene-2-sulfonyl azide 665
naphthols 46, 47, 49, 59, 89, 213, 437, 707, 708, 724,
844, 1095, 1120, 1123
naphthoquinodimethane diradicals 656
1,2-naphthoquinones 708
1,4-naphthoquinones 707, 708
N-arylimines 688
native chemical ligation 13
N atom pyramidalization 135
Nazarov cyclization reaction 350
N-benzyl-N-methylformamide 710
N-bromosuccinimide (NBS) 231
n-butanol 59, 113
negative activation entropy 192, 193, 195, 197, 872,
874, 8861340 Index
negative activation volume 202, 203, 390
Negishi cross-coupling reactions 1154, 1156
4N electrons 298, 368
4N + 2 electrons 296, 298, 299, 368
9-neopentylfluorenyllithium 459
neutral semibullvalene derivatives 312–313
Newman–Kwart rearrangement 13
N-heterocyclic carbene (NHC) 379, 722, 804–806, 830,
897, 1049, 1065, 1100, 1101, 1107, 1146, 1149, 1150,
1154, 1155, 1179, 1181
N-heterocyclic carbene-catalyzed transesterifications
804–805
N-heterocyclic silylene 448
Ni(0)-catalyzed butadiene + butadiene + alkyne
cooligomerization 1113
Ni-catalyzed Mizoroki–Heck couplings 1177
ninhydrin 145
Nishimura catalyst 892
nitrenes 339, 437, 440–442, 447–451, 663, 664, 1030,
1087
nitric oxide 437, 441, 728, 863
4-nitrobenzonitrile oxide 420, 424
nitrone 424, 426, 705, 856, 1101–1103, 1122
2-nitrophenol 369
nitroso hetero-Diels–Alder reaction 415
N-metalated azomethine ylides 436
N-methoxysulfonamide 665
N-methylacridinium bromide 715
N-methylmaleimide 652
N,N-dialkyldiazoacetamides 653
N,N’-diamidocarbene 439
no activation entropy 695
nocardicin D 378, 380
n-octane 54, 114
nonactivated C–H bonds
– direct alkylation of 1190–1191
– direct arylation and alkynylation of 1189–1190
nonactivated C(sp3)-H nucleophiles 1148
nonactivated olefins 1066
nonameric polyphenol 149
nonaromatic polyolefinic structure 299
nonbonding electrons 11, 12, 132, 135, 302, 304, 306,
317, 858, 873
noncatalyzed (4+3)- and (5+2)-cycloadditions
431–434
noncatalyzed nucleophilic additions 1134
noncompetitive inhibition 186–187
nonconcerted 1,3-dipolar cycloaddition 424
nonconcerted reactions 339, 1029
nonharmonic oscillator 4
nonisothermal kinetics 177
non-Kekulé hydrocarbon 656
non-Kekulé ??-conjugated system 37
nonlinear cheletropic model 438
nonlinear polyatomic molecule 6
nonmetal Mizoroki–Heck coupling 658
non-nucleophilic solvent photolysis 657
nonpericyclic reactions of singlet oxygen 707–710
nonplanarity of norbornene double bond 316, 410
nonpolar cycloaddents 399
nonracemic ??-amino-??-lactams 378
nonrearranged allyl hydroperoxide 700
nonrelativistic Schr?dinger equation 277
nonsinglet oxygen mechanism 705
nonvertical stabilization 280, 321
norbornadiene 430, 670, 671
– cyclodimerization of 1100
norbornadienes (bicyclo[2.2.1]hepta-2,5-dienes) 430
(norborn-2-eno)[c]furan 410
1-norbornyl cation 654, 655
norcaradiene 311, 358, 359, 435, 468, 469
normal electron-demand 394, 696, 853
normal equilibrium deuterium isotopic effect 50
Norrish type II reaction 639–642
19-norsteroids 349
Norton’s mechanism, for reductive elimination 880
Noyori catalysts 900
Noyori enantioselective hydrogenation of ketones 214
n(N:)/?? conjugation effect 133
N-phenylmaleimide 138
n-propylbenzene 111
N-substituted benzotriazoles 667
N-sufinylbenzenesulfonamide 416
N-sulfinyl compounds 414
N-sulfonylphenylamine 665
nuclear-electronic attraction 272
nuclear energy (Enucl) 4
nucleofugal group substitution 802–804
nucleophilic additions 801, 810, 1054
– 1,4-additions 814
– to aldehydes, ketones and imines 810
– bifunctional catalysts 811–812
– self-assembled encapsulation 813–814
– ??- and ?? 812–813
nucleophilic aromatic substitutions 237, 238, 798,
922–927, 923
nucleophilic dipoles 421
nucleophilic substitution 234–239, 815
– phase transfer catalysis 816–818
N-vinylcarbazole + imines 688
N-vinylpyrrolidinone 688
OO
– and N-trifluoromethylation 661
O’Connor’s synthesis 889
octacarbonyldicobalt 861
octa-1,7-diene-3,6-diyl diradicals 676
octahedric compound 861Index 1341
octet of electrons 29, 1164
1O
2(1?g)+cyclohexa-1,3-diene
?2,3-dioxabicyclo[2.2.2]oct-5-ene 697
O’Ferrall–Jencks diagram 236, 486, 488
O’Ferrall–Jencks type of diagram 393, 487
Ohloff–Rautenstrauch cyclopropanation 1077–1078
18O-labeled H
2O 451
18O-labeled pinacol 451
olefinations analogous to Wittig reaction 384–386
olefin aziridination 440, 441
olefin metathesis 869, 1125–1127, 1131
olefin oxidation 920
one-center reagents 1087
one-pot double carbonylation 1052
Oppolzer’s camphorsultam derivatives 218
optically active ketone (R), 639
optically active 6-methylidenebicyclo[3.1.0]hex-2-enyl
derivatives 465
orbital angular momentum 622, 623
order of reactions 178–179
(i,i+1)- or (i,i+n)-disubstituted isomers 139
organic chemistry 24, 25, 203, 271, 437, 514, 836,
869–873, 1036, 1143
organic compounds 1, 9–14, 24, 32, 43, 51, 59, 66, 85,
86, 109, 113, 116, 271, 314, 615–626, 662, 668, 689,
693, 704, 727–731, 795, 796, 858–860, 914, 923,
1030–1053, 1116, 1118, 1135
organic photochemistry 615–735
organic reactions 2, 8, 10, 14–20, 38, 45, 109, 188, 339,
816, 858, 870
organoalkali compounds 459–462
organoaluminum compounds, addition of 1143–1145
organoboron reagents 1161, 1164
organocatalyst 46, 49, 224, 225, 434, 713, 795, 796, 805,
815, 827
organodiborons 1145
organofluorine compounds 817
organoleptic properties 148, 149, 151
organolithium reagents 866, 1145
organometallic complexes 46, 223, 711, 858, 859
organometallic reagents, additions of 1029, 1134–1148
organosilanes synthesis 1146
organo-SOMO catalyzed reactions 835, 836
organotin compound (Et4Sn) 1135
ortho- and para-hydroperoxides 707
ortho-benzenediazonium carboxylate 181
ortho-disubstituted benzenes 117
ortho-methylbenzyl chloride 154
ortho-nitrobenzyl ethers 640
orthoquinodimethanes 33, 348, 349, 417, 434, 441, 445
ortho rule 400–403
Oseltamivir phosphate 215, 216
O-(trifluoromethyl)dibenzofuranium salts 661
8-oxabicyclo[3.2.1]oct-3-en-2-one 433
2-oxabicyclo[3.2.1]oct-6-en-3-one derivative 408
1-oxa-1,3-dienes 414, 851, 852
oxa-di-??-methane rearrangements 643
oxaethylenes 302
1-oxahepta-1,3,5,6-tetraenes 359
oxamide 730
1,2-oxaphosphetanes 380, 382
oxaquadricyclanes 430
1,2-oxazines, asymmetric synthesis of 1102
oxepins 358, 430, 1116
oxetane cycloadduct 373
oxetanes 66, 681, 682, 684–686
oxidant 208, 210, 224, 225, 227, 428, 441, 692, 694, 707,
719, 721, 722, 724, 831, 832, 834, 835, 911, 912, 914,
915, 917, 918, 920, 922, 1043, 1054, 1116–1123
oxidation of allylic alcohol 224, 359, 703
oxidation of hydrazine 498, 731
oxidation potential 24, 710, 732, 734, 914
oxidative addition 51, 52, 715, 863–868, 870, 873–880,
887, 895–897, 900, 911, 915, 922, 925–927, 1032, 1033,
1036, 1039, 1041, 1048, 1049, 1053, 1058–1060, 1062,
1064, 1065, 1070–1072, 1084, 1095, 1107, 1119, 1121,
1142, 1149, 1150, 1155, 1159, 1160, 1162, 1164, 1165,
1168, 1169, 1173, 1180, 1181, 1184, 1186, 1190
oxidative additions and reductive eliminations 873–880
oxidative alkyne coupling 898, 1116–1117
oxidative annulations 1115–1116
oxidative aryl/aryl cross-coupling reactions 1121–1122
oxidative aryl/aryl homocoupling reactions 1119–1120
oxidative aza-Henry reaction 721, 723
oxidative (2+1)-carbo-annulation 1116
oxidative carbonylation, of alkenes 1042, 1043
oxidative C—C cross-coupling reactions 1117–1119
oxidative cyclizations/reductive fragmentations 871,
890, 891
oxidative electron transfer 710
oxidative (3+2)-heterocarbo-annulation 1116
oxidative Mizoroki–Heck reactions 1117
oxidative stress 688, 689
3-oxidopyridinium betaines 435
3-oxidopyrilium betaine 433
3-oxidopyrylium 435
oximes
– exothermicity 136
– formation 136
oxiranes 355, 356, 1105
oxocarbene 442
oxomethylene (nucleophilic carbene) 223, 1030
3-oxooxetane derivative 375
oxo process 1034–1036, 1038
oxoproducts 1034
2-oxopyrrolinin-1-yltetrahydroquinolines cis 688
oxyallyl cation 382, 419, 431, 432, 1104
oxyallyl intermediates 432, 433, 4421342 Index
2-oxyallyl zwitterion intermediates 442
oxy-anion hole 806
oxycarbene 639, 640
2-oxycyclopentenyl cation intermediate 350
2-oxycyclopent-2-en-1-yl cation intermediates 350
oxygenation of electron-rich organic compounds
729–731
oxygenation of Grignard reagents 728
oxygen probe 729
oxygen rebound 913, 914
(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) 637,
918, 1043
oxyluciferin 734
3-oxypentadienyl cation intermediates 352
ozone 53, 422, 423, 694, 728, 1030
Pp
-acetylstyrene 673
palladacycle 898, 1172
palladacyclobutane intermediates 1171
palladium-based catalysts 1148
(??3-allyl)palladium complex 1118
palladium complexes 213, 874, 1062, 1084, 1172
palladium N-heterocyclic carbene 898
palladium stabilized trimethylenemethane derivatives
436
Paquette’s synthesis of dodecahedrane 642
parallel kinetic resolution 46, 211–212
parallel reactions 14, 183, 190, 211, 684, 706
paramagnetic impurity 877
para-rule 400, 402, 403
partially twisted (Z)-stilbene 619
partition function, of molecule 4
Patern?–Büchi reaction 681–686, 717
Pauli exclusion principle 276, 622
Pauson–Khand reaction 1089
– (2+2+1)-cycloaddition 1043
– cyclohexylamine catalysts 1045
– Magnus–Pr?ncipe mechanism 1045
– phosphane sulfides 1045
– [Rh(CO)(ligand)]Cl-catalyzed 1046
– TEMPO 1043
– tetramethylthiourea catalysts 1045
p-benzosemiquinone 707
p-bromo- and p-chloromethyl- benzophenone 656
Pd-catalyzed cyclopropanation, of electron-deficient
alkenes 1074
Pd-catalyzed oxidative carbocyclizations 1118
Pd(II)-mediated oxidative carbonylations 1042–1044
Pd nanoparticles 1172
Pearson’s hard and soft acid base (HSAB) theory 38, 39
pentadienyl cation 292, 352, 433
pentadienyl system 291–292
1,2,3,4,5-pentamethycyclopent-2-en-yl cation
intermediate 352
pent-1-ene by dichlorocarbene 438
perchlorophenylacetylene 429
pericyclic [??6d] vs. pseudopericyclic electrocyclizations
360
pericyclic reactions 339–526, 831, 1029
– reactions involving reactive intermediates 339
– reactions that do not involve reactive intermediates
339
peroxo complex 922, 1117
peroxylate chemiluminescence 734
peroxynitrite 694
persistent silylenes 448, 449
persistent triplet radical pairs 651
perturbation of molecular orbital (PMO) 12, 130, 132,
136, 276–277, 281, 282, 284–287, 293–295, 297, 298,
302, 304–307, 311–314, 317, 324–326, 346, 367, 399,
457, 458, 858, 860, 863, 1103
Peterson olefination reaction 385
phase transfer catalysis 816–818
phenacyl bromide 715, 716
1,10-phenanthroline 919, 923, 926, 1120, 1121, 1168,
1176, 1183
phenols 13, 50, 59, 66, 87, 89, 157, 649, 661, 707, 708,
710, 721, 917, 918, 921, 923, 925, 1102, 1120, 1182,
1184
2-phenylbenzimidazole 665
1-phenylcyclohexene (E), 628
2-phenyl-4-(4-fluorophenyl)-5-(4-trifluorophenyl)
imidazole 729
5-phenyl-1H-tetrazole 667
5-phenyl-2H-tetrazole 667
1-phenyl-1H-1,2,3-triazoles 666
8-phenylmenthol 407, 408
phenylnitrenium ion 663
phenylpalladium hydroxide complex 1164
phenyl substituent effect 25, 26, 486
5-phenyl-1,2,3,4-thia-triazole 423
4-phenyl-1,2,3-triazole 667
phosphine-catalyzed (3+2)-annulation 830
phosphine stabilized silicon(II) hydride 448
phosphinidenes 437, 450, 451
phosphitozonides 694
phospholes 13, 137, 138
phosphonate-stabilized carbanions 384
phosphonoacetates catalyzed 804
photoacoustic calorimetry (PAC) 24, 628
photoactivation of Co2(CO)8 1044
photocatalyst fac-Ir(ppy)3 719
photocatalytic activation of amines 719
photocatalyzed ??-elimination 713
photocatalyzed hetero-Diels–Alder reactions 712
photochemical Balz–Schiemann fluorination 660Index 1343
photochemical (2+2)-cycloaddition 668, 674, 676–678,
681–687
photochemical cycloadditions of unsaturated
compounds
– benzene and derivatives to alkenes 677–681
– carbonyl compounds 681–686
– excimers 667
– exciplexes 667
– imines and related C=N double bonded compounds
686–688
– intramolecular cycloadditions 668–672
– Longuet–Higgins model 668–672
– photochemical intermolecular (2+2)-cycloadditions of
alkenes 672–676
– photochemical intermolecular (4+2)-cycloadditions of
alkenes 676–677
– photochemical intermolecular (4+2)-cycloadditions of
dienes 676–677
– photochemical intramolecular (2+2)-cycloadditions of
alkenes 668–672
– photo-induced condensation 667–688
– zwitterionic character 667
photochemical cyclopropanation of alkenes 655
photochemical electron transfer (PET) 869
photochemical intermolecular (2+2)-cycloadditions of
alkenes 672–676
photochemical intermolecular (4+2)-cycloadditions
– of alkenes 676–677
– of dienes 676–677
photochemical intramolecular (2+2)-cycloadditions of
alkenes 668–672
photochemical reactions 181, 615, 622, 624–644, 648,
654, 661, 664, 665, 667, 668, 673, 679, 681–683, 685,
686
photocleavage of carbon-heteroatom bonds
– phenyliodonium salts 659–660
– photo-Fries, photo-Claisen and related
rearrangements 649–650
– photolysis of alkyl halides 654–657
– photolysis of 1,2-diazenes, of 3H-diazirines and diazo
compounds 651–654
– photolytic decomposition of arenediazonium salts in
solution 660–661
– solution photochemistry of aryl and alkenyl halides
657–659
photocleavage of nitrogen-nitrogen bonds
– photo-Curtius rearrangement 664–665
– photolysis of azides 662–664
– photolysis of geminal diazides 665–666
– photolysis of 1,2,3-triazoles and of tetrazoles
666–667
photo-Curtius rearrangement 664–665
photo-decarbonylation 639, 640
photodynamic effect 692
photoelectric effect 21, 271
photoelectron spectroscopy (PES) 20, 398
photoelectron transfer (PET) 707
photoexcited ??-azocarbonyl compound 654
photo-Fries, photo-Claisen and related rearrangements
649
Photofrin® 692
photoheterolysis 657
photohomolysis 657
photohomolytic cleavage 659
photoinduced conrotatory electrocyclic [??6c] ring
openings 635
photoinduced dediazoniation 660
photoinduced dehalogenation 656
photoinduced electron transfers (PET) 624, 625, 638,
657, 668, 686, 694, 710–727, 796, 831, 833
– Bell–Evans–Polanyi equation 711
– catalysis through photo-oxidation 717–724
– catalysis through photoreduction 711–715
– coulombic potential energy 710
– dye-sensitized solar cells 726–727
– generation of radical intermediates 724–726
– Marcus model 711
– net oxidations 721–724
– net reductions 715–717
– oxidation potential 710
– oxidative electron transfer 710
– reduction potential 710
– reductive electron transfer 710
– Rehm–Weller effective reaction free enthalpy 711
– Rehm–Weller empirical equation 711
– return electron transfer 710
photoinduced net oxidations 721–724
photoinduced net reductions 715–717
photoinduced [??6c]-ring closure 635
photoinduced [??2s+??2s]-cycloaddition 633
photoinduced Wolff rearrangement 653, 654
photoinduced (E)/(Z)-isomerization of alkenes
626–630
photoisomerization
– of benzene 644–646
– of diazines 646–647
– of pyridines 646–647
– of pyridinium salts 646–647
photolysis 864, 872
– of alkyl halides 654–657
– of azides 662–664
– of 1,2-diazenes, of 3H-diazirines and diazo
compounds 651–654
– of five-membered ring heteroaromatic compounds
647–648
– of geminal diazides 665–666
– phenyliodonium salts 659–660
– of 1,2,3-triazoles and of tetrazoles 666–6671344 Index
photolytic decomposition of arenediazonium salts in
solution 660–661
photo-oxidation of phenols and naphthols 707
photo-oxygenation
– (2+2)-cycloadditions of singlet oxygen 704–705
– Diels–Alder reactions of singlet oxygen 695–700
– dioxa-ene reactions 700–704
– 1,3-dipolar cycloadditions 705–707
– non-pericyclic reactions of singlet oxygen 707–710
– reactions of ground state molecular oxygen with
hydrocarbons 688–691
– singlet molecular oxygen 691–695
photophysical processes 615–626
– bimolecular photophysical processes 623–626
– fluorescence and phosphorescence 620–623
– UV light 616–620
– UV-visible spectroscopy 616–620
photoredox catalyst 712, 713, 831
photoredox-labile protective group 713
Photosens® 692
photosensitization 624, 625, 629, 671, 688, 691
photostationary state 627, 628, 655
physical quenching 694, 710
??-allylruthenium intermediates 1056
picomolar drug 187
??-complex
– of alkenes 859
– of dihydrogen 863, 865
– theory 858, 860
??-conjugation 25–28
– and hyperconjugation 12, 13
picosecond dynamics 682
??-facial selectivity of Diels–Alder reactions 408
pinacol rearrangement 451, 452, 455
??*(C=O) stabilizing interaction 12
Pitzer strain or torsional strain 118
planar (E)-stilbene 619
Planck’s quantum hypothesis 271
PMO. See perturbation of molecular orbital (PMO)
p-nitrobenzyl chloride 711
polarizability 23, 29, 314, 320, 398, 457, 578, 624, 815,
858, 1157
polarized Nazarov cyclizations 350, 351
polar mechanism 1137, 1138
polar solvent 122, 143, 233, 238, 312, 395, 442, 657,
685, 698, 717, 718, 800, 816, 874, 877, 1143, 1172
poly (??-hydroxyalkanoates) 1050
polycyclic hydrocarbon 57, 118, 124
polyethylene 798, 910, 1136
polyfunctional organozinc compounds 1155
polymers 9, 200, 206, 213, 387, 388, 446, 692, 808, 838,
892, 923, 1029, 1114, 1117, 1126, 1129, 1134, 1161,
1164, 1172
polymerizations 7, 8, 288, 369, 370, 387, 395, 446, 449,
509, 626, 667, 673, 691, 710, 800, 805, 831, 832, 838,
883, 884, 886–890, 910, 1031, 1032, 1071, 1091, 1123,
1126, 1127, 1129, 1132, 1136, 1143, 1172
– of alkenes 8, 288, 883, 886, 1123
polypropionate fragments 419, 526, 1039, 1041
– Leighton’s synthesis of 1041
polypropionates 41, 203, 419, 518, 522, 526, 1039, 1041,
1069
polysubstituted Dewar benzenes 645
poorer overlap 13
porfimer sodium 692
positive activation entropy 193, 500, 695
positive activation volume 202
Povarov reaction 415
p,p’-dichlorobenzophenone 712
Prelog strain 118, 122
primary deuterium thermodynamic isotopic effect 50
primary kinetic deuterium isotopic effect 631, 885
primary kinetic isotope effects 51, 231–232
principle of detailed balance 182
propene, catalytic hydromethylation of 1055
prop-2-en-1-ylidenecyclopropane 403
propylene polymerization 910
prostaglandins 208, 217, 407, 408, 472, 490, 509, 796
protic acid-catalyzed 811
proton affinity of cyclobutadiene 288
protonated ??-silylalcohols 385
pseudo-axial positions 127, 841
pseudo-chair conformations 127
pseudo 6-electron electrocyclic ring opening 643
3-, 6-pseudoequatorial position 127
pseudo-equatorial positions 127
pseudo first rate law reaction 179
pseudo-meta cycloadducts 402
pseudo-ortho cycloadducts 400, 416
pseudo-para-cycloadducts 400, 402, 405
pseudopericyclic reaction 359, 360, 463
PtCl
2-catalyzed cycloisomerization, of ene-propargylic
esters 1077
pyramidality 137
pyramidal methyl cation 455
pyrazine (1,4-diazine) 64, 647
pyrazole, regioselective arylations of 1185, 1187
pyridines 66, 158, 160, 211, 427, 430, 646–647, 661,
678, 680, 803, 804, 1098, 1107, 1117, 1121, 1136, 1184
pyridinium salts 307, 646–647, 721
pyridin-2-yl sulfones (PYR) 386
2-pyridyl cation intermediates 657
pyridylnitrenyl radicals 659
pyrimidine (1,3-diazine) 64, 647
pyrimidine (6-4) pyrimidone photoproducts 685
pyrimidone photoproducts 685Index 1345
pyrroles 13, 64, 72, 88, 111, 136–138, 223, 433, 444, 648,
667, 670, 705, 715, 923, 1059, 1104, 1116, 1121, 1182
pyrrole-2,3-dione 444
4-pyrrolidinopyridine (PYP) 802
Q
quadricyclane 57, 124, 430, 670, 671, 833, 1081
quantum chemistry 271–272, 276
quantum mechanical tunneling 232
quantum photochemical yield 626
quantum yield 181, 615, 622, 623, 625–627, 631, 635,
648, 650–652, 671, 672, 674, 678, 680, 691, 694, 711,
727, 728, 732–734
quasi-enantiomeric DMAP derivatives 212
quaternization of phosphine 138
quencher 623, 624, 650, 680, 682, 683, 688, 694, 710,
728, 732
quenching 235, 350, 356, 430, 431, 434, 460, 461, 472,
486, 623, 624, 636, 639, 652, 654, 657, 669, 682, 693,
694, 698, 710, 711, 722, 914, 1077, 1094, 1095, 1123,
1168, 1188
quenching rate constant 623, 711
quinones 687, 707, 852, 894, 915, 1118
R
racemic aryl ketone 640
racemic compound 44, 48, 49, 211, 212
racemic cycloadduct 376
racemic propylene oxide 208
racemization 8, 46–48, 129, 194, 203, 212, 213, 217,
221, 229, 232, 239, 324, 372, 465, 468, 470, 472, 491,
492, 496, 516, 637, 639, 804, 892, 1136, 1152
racemization of 1,3-dimethylallene 194, 372
rac-estrone 640
radical additions 393, 507, 658, 1029, 1054, 1124, 1151
radical buffers method 23
radical-cation 452, 668, 694
– mechanism 32, 914
radical intermediates 22, 68–72, 74–75, 195, 497, 669,
715, 724–726, 796, 873, 913, 921, 1049, 1054, 1123,
1124, 1148, 1149, 1151–1153, 1173, 1178
radical scavengers 369, 370, 388, 446, 637, 689, 703
Ramberg–B?cklund reaction 446, 447
Ramizez/Corey–Fuchs olefination 383
rate constants 2, 3, 9, 14, 30, 39, 148, 178, 180–184,
186–191, 197–199, 201, 207, 212, 226, 231–233, 238,
293, 341, 354, 369, 370, 374, 375, 382, 388, 391, 395,
397–399, 418, 442, 456, 458, 468, 487, 492, 499, 516,
620, 622–625, 641, 663, 671, 673, 682, 691, 693, 694,
696, 698, 702, 703, 711, 729, 732–734, 879, 886, 921,
1124, 1130, 1159, 1160
rate-determining step 14, 39, 181, 184, 193, 202,
231–235, 238, 345, 370, 375, 382, 384, 395, 412,
428–430, 486, 507, 514, 518, 631, 696, 697, 705, 733,
801, 822, 827, 832, 841, 847, 849, 855, 872, 875, 879,
880, 885, 894–896, 898, 904, 910, 914, 921, 1032, 1033,
1049, 1052, 1056, 1058, 1060, 1074, 1093, 1099, 1100,
1113, 1119, 1121, 1124, 1137, 1139, 1159, 1160, 1164,
1173, 1180, 1181, 1186, 1187, 1190
rate law 3, 129, 177–190, 208, 229, 234–237, 370, 374,
387, 418, 445, 468, 518, 683, 872, 873, 885, 894, 898,
920, 1045, 1046, 1055, 1065, 1073, 1121, 1181, 1187
rates of chemical reactions
– activation parameters 188–192
– activation volume
– – base-catalyzed hydrolysis of esters 202
– – Bergman rearrangement 205–206
– – high pressure 203
– – rate enhancement 204–205
– – and reaction mechanism 201–202
– chemo- and site-selective reactions 229–230
– cyclization and intermolecular condensation
197–201
– differential and integrated rate laws
– – competitive vs. non-competitive inhibition
186–187
– – consecutive irreversible reactions 184–185
– – consecutive reactions 183–184
– – heterogeneous catalysts 187–188
– – Michaelis–Menten kinetics 185–186
– – molecularity mechanisms 179–181
– – order of reactions 178–179
– – parallel reactions 183
– – reaction mechanisms 179–181
– – reversible reactions 182–183
– – steady-state approximation 184
– – zero order reactions 181–182
– enantiomerically enriched compounds 206
– kinetic isotope effects
– – hydrogen transfers 231–232
– – natural abundance 239–240
– – nucleophilic substitution and elimination reactions
234–239
– – steric effect on 239
– – tunneling effects 232–234
Rauhut–Currier dimerization 825
Rauhut–Currier reaction 825, 826, 1029
RCHO 210, 224, 382, 387, 513, 619, 715, 822, 827, 862,
902, 903, 1030, 1039, 1047, 1064, 1065
(R)-(–)-DTBM-Segphos 1078
reaction entropy 2–4, 22, 23, 40, 146, 147, 151, 368,
903, 1096
reaction kinetics 3, 184
reactive oxygen species 689
rearranged allyl hydroperoxide 700
rearranged allylic hydroperoxides 700
reduction potential 660, 710
reductive activation of molecular oxygen 917–9181346 Index
reductive electron transfer 710
reductive elimination 715, 865, 870, 873–882, 886, 891,
892, 895, 896, 903, 911, 921, 925, 927, 1032, 1036,
1039, 1045, 1047, 1053, 1058, 1062, 1065, 1067, 1071,
1074, 1081, 1091, 1093, 1095, 1107, 1111, 1113, 1121,
1122, 1139, 1141, 1149, 1151, 1155, 1159, 1160, 1162,
1164, 1165, 1168, 1171, 1181, 1184, 1186–1188
regioisomeric cycloadducts 371, 372, 391, 399, 402, 418
regioisomeric (4+2)-cycloadducts 389
regioisomeric pseudo-ortho cycloadduct 403
regioselective meta photocycloadditions 678
regioselective photoinduced oxidation 640
regioselectivity of Diels-Alder reactions 399–406
Rehm–Weller effective reaction free enthalpy 711
Rehm–Weller empirical equation 711
(R)-enantiomer 43
Reppe carbonylations 1041–1042
repulsive interaction 23, 115, 116, 139, 294, 296, 306,
316, 318
resin-bound imines 378
resolution of racemates 43–46
resonance integral 275, 277, 278, 302, 304, 308–310,
362, 363
retention of configuration 452, 459–462, 464, 466, 485,
712, 799, 873, 874, 878, 881, 1052, 1158–1161, 1165,
1166, 1169
retro-Brook reaction 462
retro-carbonyl-ene reaction 195–197, 503
retro-Diels–Alder reactions 155, 156, 316, 388, 391,
670, 695, 731
retro-donation 838, 858, 859, 861–863
retro-hetero-Diels–Alder reaction 391
return electron transfer (RET) 624, 626, 671, 710, 711,
733
reversible (2+1)-cheletropic reaction 439
reversible Diels–Alder reaction 40, 41
reversible heterolysis 451
Rh(I)-catalyzed (4+2)-carbocyclizations, of
o-vinylbenzaldehyde 1095
Rh-catalyzed carbonylative formal
(3+2+1)-cycloaddtion 1102
Rh(I)-catalyzed (5+2)-cycloaddition
– of 3-acyloxydec-4-ene-1,9-diynes 1107
– of vinylcyclopropanes 1106
Rh-catalyzed intramolecular silylformylation of alkenes
1039
[Rh(CO)(ligand)]Cl-catalyzed Pauson–Khand reaction
1046
Rh(I)/HI-catalyzed carbonylation, of ethylene 1042
rhodacyclopentanone 1081
rhodium-catalyzed intermolecular hydroacylation
reaction 1064
rhodopsin 629
Rifamycin 218, 220
rigid rotor 6
ring-closing enyne metathesis 1131, 1132
ring strain
– of cycloalkane 117
– geometrical deformations 118
– transannular repulsions 118
Ritter reactions 655, 661
(R)-6-methylbicyclo[4.3.0]non-1-en-3-one 372
Rodionov reaction 210
rose bengal on Merrifield resin 692
Rose Oxide 703, 704
rotational energy 4–6
Roush allylboronation 845
Ru-catalyzed (2+2)-cycloadditions, of alkynes 1080
Ru-catalyzed ene-reaction, of unactivated alkynes and
alkenes 1057
Ru(II)(2,2’-bipyrazine)3 salt 718
ruthenacyclopentene intermediate 1056, 1107
ruthenium-based dyes 726
ruthenium(II) complex 716, 718, 721
ruthenium complexes 228, 1056, 1079
ruthenium nanoparticles 893
Ruzicka large-ring synthesis 153
S
salt free betaines 380
salt-free solution 380
Sandmeyer reaction 660
Sayed’s rules 622
Saytzeff alkene 2-methylbut-2-ene 239
Schenck reaction 700
Schlenck techniques 1142
Schlenk equilibria 1136
Schlosser modification 380, 383
Scholl reaction 1119
Schotten–Baumann reaction 808
Schrock carbene 385
Schrock’s polymerization 888
Schr?dinger equation 6, 193, 272–274, 277, 326, 362,
365
Schwartz’s reagent 885, 886
s-cis-butadiene 343, 617, 697
s-cis-conformer 128
s-cis-1,3-diene conformation 397
s-cis-diene conformer 389
(2S)-2,3-dihydro-2-vinylfuran 356
(S)-(+)-1,3-dimethylallene (S) 372
sec-butanol (butan-2-ol) 113
secondary-secondary 1,2-diols 451
second law of thermodynamics 1, 3, 40
second-order perturbation equation 277
second-order rate law 179, 370, 374, 387, 683, 873, 1055
secular determinant 274, 278, 279, 282, 285, 286, 298,
302, 304, 305, 362, 363
self-assembly approach 1037Index 1347
self-disproportionation of enantiomers (SDE) 48–49
semibullvalene 124, 312–313, 488, 633, 652, 671
(S)-enantiomer 43
sensitized photo-excitation 635, 643
sensitizer 623, 625, 626, 628, 629, 633, 659, 671, 676,
687, 688, 692, 693, 696, 703, 705–708, 710–713,
715–719, 721, 724–727, 796, 831
Sensitox® 692
separate diastereoisomers 45
septet 664
SET. See single electron transfer (SET)
seven-carbon cycloaddents 1112
seven-membered cyclic ureas 433
sextet of electrons 29, 130, 461, 858, 1164
s-gauche, 128
Sharpless asymmetric dihydroxylation of alkenes 428
side-on nonsynchronous model 1075
??-bond metathesis 910, 925, 1055, 1122, 1184, 1186
??-complexes
– of C—C bonds and C—C bond activation 867–869
– of C—H bonds and agostic bonding 866–867
??/?? mixing 408
??/?? type of electronic repulsion 144
sigmatropic rearrangement 195, 373, 383, 434, 439,
451–495, 505, 632, 643, 644, 646, 845, 1029, 1096
(1,2)-sigmatropic rearrangement
– of carbenium ions 451–455
– organoalkali compounds 459–462
– radicals 456–458
(1,3)-sigmatropic rearrangement 439, 462, 465, 468,
484, 643, 845
(1,4)-sigmatropic rearrangement 465–467, 646
(3,3)-sigmatropic rearrangement 195, 383, 476–495,
1096
silacyclopent-3-enes 448
silanes, catalytic reactions of 906–910
silene 653
silicon-directed Nazarov cyclizations 351
silylenes 437, 447–449
silyl ethers 352, 353, 385, 462, 520, 647, 733, 812, 853
silylformylation 1039–1041, 1053
– of epoxides 1053
3-silyl groups 348
silyl ketene acetals 686
Simmons—Smith reaction 1076
Simplified Hückel Molecular Orbital theory (SHMO)
277, 278
single electron transfer (SET) 117, 339, 660, 712, 718,
819, 831–834, 836, 869, 872, 873, 881, 914, 923, 925,
1076, 1079, 1091, 1119, 1125, 1134–1138, 1155, 1177
singlet acyl azide excited state 665
singlet acylnitrene 664, 665
singlet and triplet excited states 620–623, 626, 667, 732
singlet aryl cations 661
singlet arylnitrene 663
singlet molecular oxygen 688, 691–695
singlet oxygen 1O2(1?g) 688, 692, 695
singlet phenylnitrene 662, 663
singlet quenchers 623, 680, 728, 732
singly occupied SOMO(R•) 281
six-center cyclic transition state 237
six-electron electrocyclic reactions 357–360
small-ring (Z)-cycloalkenes 628
small-size cycloalkenes 672
S
N2 displacements 198, 216, 217, 237, 339, 433, 713,
796, 816, 817, 1141, 1159, 1165
S
N1 mechanism 235, 658, 922, 923
S
N2 mechanism 235, 237, 874, 922, 1159
sodium azide 694
soft acids 37–39, 837, 839
soft bases 37–39, 837
Sommelet–Hauser rearrangement 460, 461
SOMO catalysis 836
sonication 40, 694, 1136
Sonogashira–Hagihara cross-coupling 1179–1182
special electronic stabilization energy 345
special flow and micro-flow reactors 615
special fluoro substituent effects 370
sp3-hybridized carbon center 17, 111, 137, 205, 370,
460, 487
spin allowed electronic transition 621
spin allowed energy transfer 693
spin angular momentum 622, 623
spin forbidden electronic transition 621
spin-orbit coupling 622, 674, 695
spiro[2.4]hept-1-ene 630
spiro-1,3,4-thiadiazoline 420
spontaneous resolution of racemates 43
stabilization, by aromaticity 130–132, 137, 144, 296,
299, 306, 358, 467
stabilization, n(O:)?? conjugation 132, 133
stabilized Wittig reagents 380, 473
stabilized ylides 381, 382
stabilizing than substitution of a sp2-hybridized carbon
center 17
stable boryl(amino)-substituted silylene 448
stable nitroxide radical 637
staggered conformations 114, 115, 119, 126, 129, 318,
322
standard entropies 1, 4, 7, 10, 54, 59, 109, 111,
113–114, 147, 157, 375
standard entropy increments 113–114
standard Gibbs free energies for equilibrium 3
standard heat formation 8, 10, 35, 36, 109–112, 139,
288, 289, 388, 412, 456, 486
– effect of electronegativity
– – on bond strength 10–111348 Index
– – and of hyperconjugation 11–12
– of radicals R• and X• 22
standard heats
– of C—H oxidations 15–16
– effect of, fluoro substituents 17–18
– of hydrogenation and of hydrocarbation 14–15
– relative stabilities, of alkyl substituted ethylenes 17
standard homolytic bond dissociation enthalpies 1, 22,
24, 68–72, 908
statistical factors 4
statistical thermodynamics 4–8, 109, 192
– partition function 4
– rotational energy levels 5–6
– statistical factors 4
– translation energy levels contribution 5
– vibrational energy levels contribution 6–7
Staudinger cycloadducts 373
Staudinger reaction 373, 376–380, 830
steady state approximation 179, 183–186
stepwise cycloaddition mechanisms 855
stepwise diradical [??2+??2]-cycloaddition 429
stepwise [??4+??2]-cycloaddition 429
stereochemical inversion 874
stereoisomeric benzylic alcohols 640
stereoselective [??2s+??2s+??2s]-cycloadditions 430
stereoselectivity 197, 362–364, 406–408, 420, 439, 1079
stereoselectivity of Diels–Alder reactions 406–408
stereotriads 419, 1039, 1041
sterically hindered cycloalkanethione S-methylides 427
steric effects 109, 114–117, 126, 239, 339, 348, 499,
848, 885
steric factors 141, 217, 218, 229, 232, 361, 372, 402,
408, 409, 424, 439, 513, 518, 656, 677, 685, 724, 858,
874, 885, 914, 1106, 1169, 1175
steric interactions 17, 113, 121, 510, 879, 1093, 1165
Stern–Volmer analysis 623
Stettler reactions 821–822, 1029
Stevens rearrangements 460, 461
Stille cross-coupling and carbonylative Stille reaction
1157–1161
storage of hydrogen, under formic acid 18–20
straight [??2+??2]-cycloaddition 669, 670
strained alkenes 415, 499, 502, 853, 1079
strained cyclic vinyl cation intermediates 660
strained hydrocarbons 117–126, 910, 1071
strain energies 117–120, 123, 322, 628, 1071
s-trans and s-cis-butadiene 285, 676
s-trans-1,3-dienes 697
– (E)-hex-5-ene-1,4-diyl diradical 387
Streitwieser’s ytterbium-catalyzed 841
strongest bond 10
structural effects on the Diels–Alder reactivity
397–399
styrene 8, 29, 56, 86, 132, 369, 376, 399, 637, 673, 831,
833, 839, 885, 895, 897, 898, 1043, 1051, 1052, 1057,
1062, 1066, 1073, 1074, 1117, 1123, 1131, 1140, 1141,
1172, 1173, 1177, 1178
subnanomolar detection limit for H
2O2 731
5-substituted cyclopentadienes 408
6-substituted fulvenes 435, 436
2-subtituted 2,3-dihydro-4-pyridones 211
succinodinitrile 139
sucrase-catalyzed hydrolysis of sucrose 185
sulfodimides 416
sulfonate detergents 114
sulfur dioxide 144, 178, 378, 387, 398, 416–418, 423,
430, 437, 444–447, 505, 514
sunlight 19, 615, 616, 633, 635, 668, 681, 726, 1099
– promoted chemical reactions 615
superphane 155, 156, 434
– synthesis of 155
suprafacial/antarafacial approach 363
suprafacial/antarafacial [??2s+??2a]-cycloaddition 364,
365, 367
suprafacial (2+1)-cheletropic additions 439
suprafacial (4+1)-cheletropic additions 449
suprafacial (2+1)-cheletropic elimination 442
suprafacial (4+1)-cheletropic eliminations 444
suprafacial hetero-Diels–Alder mode 417
suprafaciality 416, 420, 424
suprafacial/suprafacial approach 363
suprafacial/suprafacial cycloaddition 362
suprafacial/suprafacial Diels–Alder reactions 366
Surzur–Tanner rearrangement 458
Suzuki–Miyaura cross-coupling reaction 1161–1166
Swain–Schaad relationship 232, 233
Swern oxidation 473, 918
symmetrical C40-carotenoids 383
symmetrical perepoxides 702
symmetry number 6, 8, 52
synchronous conrotatory electrocyclic isomerization
345
synchronous disrotatory electrocyclic reaction
342–344, 346, 347
synchronous [??4c] reaction is assisted electronic
interaction 344
synchronous [??2s+??2s]-cycloaddition 363, 364, 366
synchronous [??2s+ ??2s]-cycloreversion 364–366
synchronous suprafacial/antarafacial [??2s+
??2a]-cycloaddition 364, 365, 367
synchronous suprafacial/suprafacial [??2s+
??2s]-cycloaddtion 365
syngas 1030, 1034
syn-11-oxasesquinorbornene 410
syn-periplanar conformer 118
synthetic L-ascorbic acid 230Index 1349
T
tachysterol 635
(R,R)-tartaric acid derived diol (TADDOL) 413
t-BuOK (deprotonation, protonation) 133
1-t-butylbuta-1,3-diene 463
9-t-butyl-9-fluorenyllithium 459
t-butylfluoroacetylene 429, 645
1-t-butyl-3-methylallene 463
Tebbe reagent 385
TEMPO-co-catalyzed oxidative C—C coupling reactions
1122–1123
Tennessee Eastman acetic anhydride process 1033
termolecular reactions 179, 181
tert-butanol (2-methylpropan-2-ol) 59, 87, 113
4-(tert-butyl)phenyl acetate 649
tertiary aliphatic amines 694
tertiary amines 722, 905
– oxidative dealkylation of 1123
tertiary carbenium ion 14, 76–79, 200, 452, 655, 849
tertiary hydroxycarbenium ion 80, 452
tertiobutyl hydroperoxide 689
tertiobutyl peroxide 689
tetrabenzyltitanium 1056
tetrachloro-2-oxyallyl cation 432
tetracyclic [??2s+ ??2s+ ??2s]-cycloadducts 430
tetracyclic [??2,1s+ ??2,1s+ ??2,1s]-cycloadducts 430
tetracyclomerization of alkynes 891
tetraenes 55, 154, 156, 299, 359–361, 373, 405, 662,
1110, 1111
tetrafluoroethylene 370, 388
1,1,4,4-tetraflurotetramethylene diradical 370
tetrahedrane (tricyclo[1.1.0.02,4]butane) derivatives
117, 632
tetrahedranyltetrahedrane 115
tetrahydrofuran (THF) 13, 59, 64, 81, 136, 181, 299,
359, 800, 836, 855, 1052
tetrahydrofur-2-ylidene 639
4,5,6,7-tetrahydro-4,7-methano-2H-indene 410
tetrakis(dimethylamino)ethylene 729, 730
tetrakis(t-butyl)tetrahedrane 639
tetrakis(trimethylsilyl)tetrahedrane 117, 833
2,2,3,3-tetramethylbutane 113–115
2,2,4,4-tetramethylcyclobuta-1,3-dione 375, 641
2,2,4,4-tetramethylcyclobutan-1-one-3-thione
S-methylide 420
tetramethyl-1,2-dioxetane 732
tetramethylene diradical 368–370
tetramethylglucose catalyzed 812
2,3,5,6-tetramethylidenebicyclo[2.2.2]octane 398, 399
5,6,7,8-tetramethylidenebicyclo[2.2.2]oct-2-ene 398
tetramethyloxamide 729
2,2,4,4-tetramethylpentane 116
2,2,6,6-tetramethylpiperidine 694, 908
2,2,4,4-tetramethylpiperidine N-oxyl radical (TEMPO)
637, 694, 918, 919, 1043, 1122, 1178, 1181
tetrasilacyclobutadiene 291
tetrasilacylobutadiene 291
2,2,4,4-tetrasubstituted 1,3-dithiolanes 427
4,4,5,5-tetrasubstituted isomers 427
1,2,3,4-tetra(trifluoromethyl)-5-thiabicyclo[2.1.0]pent-
2-ene 648
tetra(trifluoromethyl)thiophene 648
theory of aromaticity 339
thermal concerted [??2s+ ??2s+ ??2s] cycloaddition 429
thermal (2+2+2)-cycloadditions 428–431, 1096
thermal cyclobutene-butadiene isomerization 340–342
thermal cyclodimerization of butadiene 370
thermal 1,4-eliminations 153–156
thermal four-electron cyclobutene/butadiene
isomerization 342
thermal fragmentation of 1,2-dioxetanes 732–734
thermal higher order (m+n)-cycloadditions 434–437
thermal ions 32
thermal isomerization of Dewar-benzene into benzene
728–729
thermal openings of three-membered ring systems
354–357
thermal [??4s+ ??2s]-cycloreversion 633
thermal self-initiation 8
thermal Staudinger reaction 377
thermal suprafacial (2+1)-cheletropic eliminations 446
thermal triene electrocyclizations 358
thermodynamically controlled deracemization 46–48,
221
thermodynamically stable heterochiral 227
thermodynamic (equilibrium) isotopic effects 49–52
thermolysis, of cyclododeca-1,5,9-triyne 1096
thiazolinethiones 218
thiazolium ion-catalyzed 819, 820
Thiel’s mechanism, for oxidative addition 876
thiirane 64, 356, 446
thiirane 1,1-dioxides 446
thioaldehydes 382, 427
thioesters 12, 13, 133–136, 159, 213, 218, 220, 517,
1155, 1159, 1161, 1162
thiogylcoside 446
thioketones 382
thione methylide 356
thiones 218, 220, 356, 387, 420, 422, 427, 520, 667, 687
third law of thermodynamics 4
Thorpe–Ingold effect 198–201, 204
three-center-type interactions 438
three-component carbosilylations 1147
Tietze’s syntheses 851, 852
titanacyclobutene 888
torquoselectivity of cyclobutene electrocyclic reactions
347–3501350 Index
trans- and cis-1,2-diphenylthiirane 1,1-dioxides 446
trans- and cis-1,2-divinylcyclobutane 369
1,4-transannular interactions 120
1,4-transannular repulsions 121
(+)-trans-2,3-bis(t-butyl)cyclopropanone 442
trans-1-cyano-2,3-diphenylcyclopropyllithium 354
trans-cycloadduct 642
trans-decalin 124
trans-diepoxide 699
trans-9,10-dihydronaphthalene 298
trans-3,4-dimethylcyclobutene 632
trans-1,2-disubstituted cyclopropanes 1073
trans-1,2-divinycyclobutane 369
trans-1,2-divinylcyclobutane 676
transesterification 798, 800, 804–806, 812
transfer hydrogenation 899, 900, 1029, 1069–1070
transient (Z,E)-cyclohepta-2,4-dien-1-one 347
transition metal-catalyzed C–C bond forming reactions
– alkenes, hydroarylation of 1057–1060
– alkynes, hydroarylation of 1060–1062
– annulation through catalytic intramolecular
hydrometallation 1115
– carbon-heteroatom multiple bonds, hydroarylation of
1062
– (2+1)-cycloaddition 1072–1077
– (2+2+2)-cycloaddition 1096–1101
– (2+2+2+2)-cycloaddition 1111–1112
– (3+1)-cycloaddition 1080–1081
– (3+2)-cycloaddition 1081–1087
– (3+2+1)-cycloaddition 1102–1103
– (3+3)-cycloaddition 1101–1102
– (4+1)-cycloaddition 1087–1089
– (4+2+2)-cycloaddition 1109–1110
– (4+3)-cycloaddition 1103–1105
– (4+4)-cycloaddition 1109–1110
– (5+2)-cycloaddition 1105–1108
– (5+2+1)-cycloaddition 1112
– (6+2)-cycloaddition 1110–1111
– (7+1)-cycloaddition 1112
– didehydrogenative C—C-coupling reactions
1116–1124
– direct hydrocarbation of unsaturated compounds
1053–1070
– direct hydrocarbation reactions 1069–1070
– direct reductive hydrocarbation, of unsaturated
compounds 1067–1069
– displacement reactions 1148–1191
– Fischer–Tropsch reactions 1030–1032
– hydroacylation of alkenes and alkynes 1063–1066
– hydroalkenylation, of alkynes, alkenes and carbonyl
compounds 1062–1063
– hydrocyanation of alkenes and alkynes 1066–1067
– hydroformylation of alkenes 1034–1038
– methanol carbonylation 1032–1034
– Ohloff–Rautenstrauch cyclopropanation 1077–1078
– organoaluminium compounds, addition of
1143–1145
– organoboron, silicium and zirconium compounds
1145–1148
– organometallic reagents, additions of 1134–1148
– oxidative annulations 1115–1116
– Pauson–Khand reaction 1043–1047
– Pd(II)-mediated oxidative carbonylations 1042–1047
– [??4+ ??2]-cycloaddition, of unactivated cycloadents
1090–1096
– [??2+ ??2]-cycloadditions 1078–1080
– reductive carbonylation of halides 1049–1050
– Reppe carbonylations 1041–1042
– [??2+ ??2]-cycloadditions 1072
– silylformylation 1039–1041
– thermal [??6s+ ??4s]-cycloadditions 1113
– transfer hydrogenation 1069
transition metal complexes 19, 51, 213, 339, 434, 450,
451, 496, 501, 659, 712, 796, 849, 855, 858–891, 904,
908, 909, 1057, 1058, 1060, 1062, 1072, 1073, 1079,
1091, 1100, 1165, 1167
transition states 38
– of nucleophilic additions 1135
translational energy 4, 5
transmission coefficient 188, 233, 711
trans-1-t-butyl-4,5-dihydro-4-methyl-5-
phenylazole 360
trans-1-t-butyl-2-[(E)-prop-1-enyl)-3-phenylaziridine
360
trans-1,2,3,4-tetramethylcyclobutene 341, 347
trans-1,2,4,5-tetramethyl-3-methylidenecyclopent-1-ene
352
trans-tricyclo[5.3.0.02,6]deca-3,9-diene ((2+2)-
photocycloadduct) 677
trial functions 273
trialkylethylene isomers 17
tri- and tetraalkylethylenes 17
1,2,3-triazoles 420, 661, 666–667, 1113
1,2,5-tri(t-butyl)benzene 645
tri(t-butyl)benzvalene and tri(t-butyl)prismane 645
1,2,5-tri(t-butyl)bicyclo[2.2.0]hexa-2,5-diene 644–645
tributylamine 715
(1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane 711
tricoordinated anionic complexes 875
tricyclic cycloadducts 430
tricyclic ketone 432
tricyclobutabenzene 154, 156, 1096
tricyclo[3.2.2.12,4]nonene derivatives 435
triene protonation 465
2-(2,2,2-trifluoroethyloxy)bicyclo[3.1.0]hex-3-ene 646
trifluoromethyl radical 713, 715
2,2,3-trimethylbutane 114, 115
2,4,4-trimethylcyclohex-2-enone 402
3,3,4-trimethyl-1,2-dioxetane 704, 732
trimethylene diradical intermediate 193, 357
(4R)-2,3,4-trimethylhexane-2,3-diol 452
(+)-3,3,4-trimethylhexan-2-one 452
trimethylidenemethane (TMM) complexes 1084
2,3,3-trimethylnorbornane 456Index 1351
(trimethylsilyl)diazomethane 653
trimethylsilyl trifluoromethanesulfonate (TMSOTf)
857
2,3,3-trimetylbut-2-yl anion 459
2,4,6-trinitrenes 664
triphenylphosphine 380, 699, 823, 824, 830, 1036, 1037,
1051, 1129
2,4,6-triphenylpyrilium tetrafluoroborate (TPT) 688,
719
triplet aryl cations 657, 661
triplet carbene 653, 666, 706
triplet cyclopenta-1,3-diyl diradical 651
triplet 1,4-diradical intermediate 682
triplet excited hypersurface 633
triplet excited state 620–623, 625, 626, 628, 631, 637,
643, 656, 667, 672, 674, 676, 681, 683, 691, 724, 728,
732
triplet imine-nitrene 666
triplet nitrene 440, 662, 666
triplet phenylnitrene 663
triplet photosensitizer 623
triplet quenchers 623, 650, 732
triplet sensitized photoreaction 671, 676
triplet spin state 622
triplet states of sulfonylnitrenes 665
triplet/triplet sensitization 625
tris-and tetrakis(t-butyl)cyclobutadiene 632
2,4,6-tris(tertiobutyl)phenylisonitrile 448
tris(2,2’-bipyridine)ruthenium dichloride 712
tris(2,2‘-bipyridine)ruthenium dichloride (Ru(bpy)3Cl2
715
tris(trimethylsilyl)silyl (TTMSS) 842
3,4,6-trisubstituted 3,4-dihydropyran-2-ones 415
1,2-trityl-1,2-diazene 651
tropone 67, 436
Trost’s umpolung ??-alkylation 824
Tsuji–Trost reaction 874, 1168–1171
tunneling effects 232–234
twist-boat conformer 119–121
twist-boat six-membered ring transition state 840
twist-chair conformation 122
twisted 1,2-diphenylethane-1,2-diyl diradical 628
two-electron electrocyclic reaction 356
type II dyotropic transfers 204
U
Ullmann–Goldberg reactions 923–927
uncatalyzed formal (2+2+2)-cycloaddition 430
uncatalyzed reaction 177, 352, 491, 797, 798, 811, 847
undirected C—H bond activation 1054
unimolecular photochemical reactions of carbonyl
compounds
– 1,2-diradicals 637
– electrocyclic ring closures of conjugated dienes and
ring opening of cyclobutenes 631–633
– electrophilic oxygen center 637
– enones and dienones 642–644
– hydrogen atom transfer 640
– Norrish type II reaction 640
unimolecular photochemical reactions of unsaturated
hydrocarbons
– allene 630–631
– conical intersection 626
– cyclopropene 630–631
– di-??-methane (Zimmerman) rearrangement of
1,4-dienes 633–634
– electrocyclic interconversions of cyclohexa-1,3-dienes
and hexa-1,3,5-trienes 635–637
– electrocyclic ring closures of conjugated dienes and
ring opening of cyclobutenes 631–633
– photoinduced (E)/(Z)-Isomerization of alkenes
626–630
– quantum photochemical yield 626
unimolecular photoreactions of benzene and
heteroaromatic analogues
– photoisomerization of benzene 644–646
– photoisomerizations of pyridines, pyridinium salts and
diazines 646–647
– photolysis of five-membered ring heteroaromatic
compounds 647–648
unimolecular reactions 179, 181
un-rearranged ethers 660
unstabilized ylides 380
unstable (E)-cyclohept-2-enone 642
unstable dioxetanes 697
unstable endoperoxides 696
unsubstituted ketene 374
unsymmetrically substituted thiirane-1,1-dioxides 446
Upjohn dihydroxylation 428
UV absorption spectrum 299
UV irradiation 300, 302, 450, 660, 662, 667, 672, 676,
685, 692, 694, 707, 708, 725, 831, 861, 868, 884, 1030
UV-visible spectroscopy 616–620, 652, 665, 925
V
valence-bond model 133
valence isomerism 358
valence tautomerism 358, 359
Van’t Hoff equation 3, 9
Van’t Hoff plot 9, 25, 29, 31, 32
variation theorem 273, 342, 362, 365, 617
Vasella’s asymmetric hetero-Diels-Alder reaction 417
Vaska’s iridium complexes 877
very fast radical clocks 702
vibrational energy levels 4, 6–7
vibrational frequency 4, 6, 49–51, 231, 234
vibrationally excited states 52, 620
Viehe’s thermal cyclotrimerization of
t-butylfluoroacetylene 429
vinylaziridines 433, 1105
vinyl-??-ionol 383
vinyl cations 18, 320, 659, 660
4-vinylcyclohexene 369, 387, 390, 434, 676, 1079, 1109,
11141352 Index
1-vinylcyclopentene 630
vinylcyclopropane 463, 464, 633, 682, 1083, 1087, 1090,
1102, 1105–1108, 1129
– iron-catalyzed (3+2)-cycloadditons 1083
– Pd-catalyzed (3+2)-cycloadditons 1083
– Rh(I)-catalyzed (5+2)-cycloaddition of 1106
3-vinyl-1,2-dioxetane 705
vinyl-1,4-diradical 696
vinyl ethers 35, 132, 136, 195, 305, 373, 414, 424,
478–481, 488, 494, 678, 704, 831–833, 852, 853
vinylogous allenamides 670, 671
vinylperepoxide 696, 697, 705
2-vinylperepoxide 705
vinylsiliranes 448
vinylstannirane 448
vinyl substitution 28, 488, 619
visible light 615, 616, 661, 712
– irradiation 721
– photoredox catalysis 712
– redox photocatalysis 615
vitamin A acetate 382, 384
vitamin D 635, 636
Vollhardt’s synthesis, of steroids 1097
voluminous Ph
3P 382
W
Wacker process 920–922, 1042, 1043, 1118, 1168
– Henry’s mechanism of 920
Wagner–Meerwein rearrangements 201, 339, 350, 352,
452, 455–457, 461, 497, 859, 880, 881, 914
Wasserman’s mechanism 916
water gas shift reaction 912, 1030, 1034
water-shift gas (WSG) reaction 18
water-soluble catalysts 1038
wave function 272–274, 285, 340, 342, 344, 362, 363,
365, 394, 622, 624, 625
wave model 272
Weingarten’s mechanism 924, 926
Weinreb amides 380, 520, 1048, 1184
Wender’s catalyst 1085
Wigner’s spin conservation rule 624
Wilkinson’s catalyst 894–897, 906, 907, 911, 1065, 1105
Winstein–Holness equation 191, 192
Wittig olefination 135, 225, 339, 380–385, 473, 1125
Wittig reaction 380, 382–386, 662
Wittig reagents 380
Wittig rearrangement 339, 460, 472–475
Wolff rearrangement 373, 376, 653, 654
Woodward–Fieser rules 619–621
Woodward–Hoffmann
– molecular orbital correlation diagram 366
– rules 339, 340, 350, 354, 355, 357, 361, 364–366, 368,
375, 389, 444, 446, 462–465, 468, 469, 499, 632, 635,
642, 668, 1078, 1103
– simplification 345–346
X
Xe singlet-triplet intersystem crossing 678
Y
Yamamoto’s tris(trimethylsilyl)silyl-governed
842
yeast alcohol deshydrogenase (YADH) 234
Z
(Z)-alkenes 17, 54, 117, 127, 279, 380, 385, 627, 898,
1130
(Z)- and (E)-but-2-ene 17, 54, 672
(Z)-azobenzene 629
(Z)-cyclohept-2-enone 628, 642
(Z)-cyclohex-2-enones 60, 642
(Z)-cyclononene 631
(Z)-cyclooctene 125
(Z)-1,2-diarylethylenes 635, 636
(Z)-1,2-disubstituted alkenes 678
(Z)-enolate 415, 518, 519, 522
zeolites 798, 833, 848, 850, 915, 1030, 1033,
1057, 1143
zero-order rate law 178, 181, 182, 1181
zero order reactions 179, 181–182
(Z)-hexa-1,3-diene-5-yne 56, 645
(2Z)-hexa-2,4,5-trienals 359
(3Z)-hexa-1,3,5-trienes 55, 357
Ziegler–Natta polymerization 838, 883, 884, 886
Ziegler’s synthesis of cyclopentadecanone 198
zinc-porphyrin-containing dye 727
zirconia-silica heterogeneous catalyst 1038
zirconium-catalyzed asymmetric carboalumination
1143
(Z)-4-methylbut-2-ene in cyclohexane 441
(Z)-4-methylhexa-1,3-diene 347
(Z)-4-methylpent-2-ene 126
(Z)-1-phenylcyclohexene 628
Z–R dipole 133
(Z)-stilbene 56, 439, 446, 618, 619, 623, 627, 628, 635,
636
Z
trans contribution 7
zwitterionic character 137, 430, 626, 667
zwitterionic 2,5-dihydrofuran 1-oxide 697
zwitterionic intermediate 350, 371, 376, 378, 386, 396,
411, 414, 416, 419, 420, 433, 439, 507, 510, 698, 705,
824, 828, 848, 855, 1077, 1091
zwitterionic limiting structure 374, 394, 395, 402–404,
407, 413, 414, 416, 419, 424, 479, 678, 843
zwitterions 372, 386, 394, 395, 482, 698, 819, 826, 830,
855, 1072
(Z,Z)- and (E,Z)-cycloocta-1,3-dienes 632
(Z,Z)-cycloocta-1,3-diene 347, 632
(Z,Z)-1,4-dideuteriobutadiene 341, 389, 406
(Z,Z)-3,4-dimethylhexa-2,4-diene 347
(Z,Z,E)-octa-2,4,6-triene 445
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

عالم الكتب - Books World

Recent Posts

Magnetics, Dielectrics, and Wave Propagation with MATLAB Codes – Second Edition

Magnetics, Dielectrics, and Wave Propagation with MATLAB Codes - Second EditionCarmine VittoriaContentsPreface xiiPreface to the…

6 ساعات ago

SolidWorks Flow Simulation 2024 Black Book

SolidWorks Flow Simulation 2024 Black BookByGaurav VermaMatt Weber(CADCAMCAE Works)Edited byKristenTABLE OF CONTENTSPreface viiAbout Author ixChapter…

6 ساعات ago

Easy Guide to Health and Safety – Second Edition

Easy Guide to Health and Safety - Second EditionPhil Hughes MBE and Liz HughesContentsPreface xChapter…

7 ساعات ago

Finite Element Analysis – With Numeric and Symbolic MatLAB

Finite Element Analysis - With Numeric and Symbolic MatLABJohn E AkinRice University, USAContentsPreface vAbout the…

يومين ago