**Machine Design – an Integrated Approach ****Robert L. Norton P.E. ****Milton P. Higgins II ****Distinguished Professor ****Emeritus ****Worcester Polytechnic Institute ****Worcester, Massachusetts ****Contents****Preface _ vii****video contents xxix****Part i fundamentals ****chaPter introduction to design _ ****. Design ****Machine Design ****. A Design Process ****. Problem Formulation and Calculation . ****Definition Stage ****Preliminary Design Stage ****Detailed Design Stage ****Documentation Stage ****. The Engineering Model . ****Estimation and First-Order Analysis ****The Engineering Sketch ****. Computer-Aided Design and Engineering . ****Computer-Aided Design (CAD) ****Computer-Aided Engineering (CAE) ****Computational Accuracy ****. The Engineering Report . ****. Factors of Safety and Design Codes ****Factor of Safety ****Choosing a Safety Factor ****Design and Safety Codes ****. Statistical Considerations ****. Units . ****. Summary . ****. References ****. Web References ****. Bibliography . ****. Problems . xvi MACHINE DESIGN – An Integrated Approach – Sixth Edition****chaPter materials and Processes ****. Introduction ****. Material-Property Definitions . ****The Tensile Test ****Ductility and Brittleness ****The Compression Test ****The Bending Test ****The Torsion Test ****Fatigue Strength and Endurance Limit ****Impact Resistance ****Fracture Toughness ****Creep and Temperature Effects ****. The Statistical Nature of Material Properties . ****. Homogeneity and Isotropy ****. Hardness . ****Heat Treatment ****Surface (Case) Hardening ****Heat Treating Nonferrous Materials ****Mechanical Forming and Hardening ****. Coatings and Surface Treatments ****Galvanic Action ****Electroplating ****Electroless Plating ****Anodizing ****Plasma-Sprayed Coatings ****Chemical Coatings ****. General Properties of Metals ****Cast Iron ****Cast Steels ****Wrought Steels ****Steel Numbering Systems ****Aluminum ****Titanium ****Magnesium ****Copper Alloys ****. General Properties of Nonmetals ****Polymers ****Ceramics ****Composites ****. Selecting Materials . ****. Summary . ****. References ****. Web References ****. Bibliography . ****. Problems . xvii****chaPter Kinematics and load determination _ ****. Introduction ****. Degree of Freedom . ****. Mechanisms ****. Calculating Degree of Freedom (Mobility) ****. Common -DOF Mechanisms ****Fourbar Linkage and the Grashof Condition ****Sixbar Linkage ****Cam and Follower ****. Analyzing Linkage Motion ****Types of Motion ****Complex Numbers as Vectors ****The Vector Loop Equation ****. Analyzing the Fourbar Linkage ****Solving for Position in the Fourbar Linkage ****Solving for Velocity in the Fourbar Linkage ****Angular Velocity Ratio and Mechanical Advantage ****Solving for Acceleration in the Fourbar Linkage ****. Analyzing the Fourbar Crank-Slider ****Solving for Position in the Fourbar Crank-Slider ****Solving for Velocity in the Fourbar Crank-Slider ****Solving for Acceleration in the Fourbar Crank-Slider ****Other Linkages ****. Cam Design and Analysis . ****The Timing Diagram ****The svaj Diagram ****Polynomials for the Double-Dwell Case ****Polynomials for the Single-Dwell Case ****Pressure Angle ****Radius of Curvature ****. Loading Classes For Force Analysis ****. Free-body Diagrams ****. Load Analysis ****Three-Dimensional Analysis ****Two-Dimensional Analysis ****Static Load Analysis ****. Two-Dimensional, Static Loading Case Studies . ****. Three-Dimensional, Static Loading Case Study . ****. Dynamic Loading Case Study ****. Vibration Loading . ****Natural Frequency ****Dynamic Forces ****. Impact Loading . ****Energy Method xviii MACHINE DESIGN – An Integrated Approach – Sixth Edition****. Beam Loading . ****Shear and Moment ****Singularity Functions ****Superposition ****. Summary . ****. References ****. Web References ****. Bibliography . ****. Problems . ****chaPter stress, strain, and deflection ****. Introduction ****. Stress ****. Strain ****. Principal Stresses ****. Plane Stress and Plane Strain ****Plane Stress ****Plane Strain ****. Mohr’s Circles . ****. Applied Versus Principal Stresses ****. Axial Tension ****. Direct Shear Stress, Bearing Stress, and Tearout ****Direct Shear ****Direct Bearing ****Tearout Failure ****. Beams and Bending Stresses . ****Beams in Pure Bending ****Shear Due to Transverse Loading ****. Deflection in Beams ****Deflection by Singularity Functions ****Statically Indeterminate Beams ****. Castigliano’s Method ****Deflection by Castigliano’s Method ****Finding Redundant Reactions with Castigliano’s Method ****. Torsion ****. Combined Stresses ****. Spring Rates ****. Stress Concentration . ****Stress Concentration Under Static Loading ****Stress Concentration Under Dynamic Loading ****Determining Geometric Stress-Concentration Factors ****Designing to Avoid Stress Concentrations ****. Axial Compression – Columns ****Slenderness Ratio ****Short Columns xix****Long Columns ****End Conditions ****Intermediate Columns ****. Stresses in Cylinders . ****Thick-Walled Cylinders ****Thin-Walled Cylinders ****. Case Studies in Static Stress and Deflection Analysis . ****. Summary . ****. References ****. Bibliography . ****. Problems . ****chaPter static failure theories ****. Introduction ****. Failure of Ductile Materials Under Static Loading ****The von Mises-Hencky or Distortion-Energy Theory ****The Maximum Shear-Stress Theory ****The Maximum Normal-Stress Theory ****Comparison of Experimental Data with Failure Theories ****. Failure of Brittle Materials Under Static Loading ****Even and Uneven Materials ****The Coulomb-Mohr Theory ****The Modified-Mohr Theory ****. Fracture Mechanics . ****Fracture-Mechanics Theory ****Fracture Toughness Kc ****. Using The Static Loading Failure Theories ****. Case Studies in Static Failure Analysis ****. Summary . ****. References ****. Bibliography . ****. Problems . ****chaPter fatigue failure theories ****. Introduction ****History of Fatigue Failure ****. Mechanism of Fatigue Failure ****Crack Initiation Stage ****Crack Propagation Stage ****Fracture ****. Fatigue-Failure Models . ****Fatigue Regimes ****The Stress-Life Approach ****The Strain-Life Approach ****The LEFM Approach xx MACHINE DESIGN – An Integrated Approach – Sixth Edition****. Machine-Design Considerations . ****. Fatigue Loads ****Rotating Machinery Loading ****Service Equipment Loading ****. Measuring Fatigue Failure Criteria ****Fully Reversed Stresses ****Combined Mean and Alternating Stress ****Fracture-Mechanics Criteria ****Testing Actual Assemblies ****. Estimating Fatigue Failure Criteria ****Estimating the Theoretical Fatigue Strength Sf’ or Endurance Limit Se’ ****Correction Factors—Theoretical Fatigue Strength or Endurance Limit ****Corrected Fatigue Strength Sf or Corrected Endurance Limit Se ****Creating Estimated S-N Diagrams ****. Notches and Stress Concentrations . ****Notch Sensitivity ****. Residual Stresses ****. Designing for High-Cycle Fatigue ****. Designing for Fully Reversed Uniaxial Stresses . ****Design Steps for Fully Reversed Stresses with Uniaxial Loading ****. Designing for Fluctuating Uniaxial Stresses . ****Creating the Modified-Goodman Diagram ****Applying Stress-Concentration Effects with Fluctuating Stresses ****Determining the Safety Factor with Fluctuating Stresses ****Design Steps for Fluctuating Stresses ****. Designing for Multiaxial Stresses in Fatigue . ****Frequency and Phase Relationships ****Fully Reversed Simple Multiaxial Stresses ****Fluctuating Simple Multiaxial Stresses ****Complex Multiaxial Stresses ****. A General Approach to High-Cycle Fatigue Design ****. A Case Study in Fatigue Design ****. Summary . ****. References ****. Bibliography . ****. Problems . ****. Introduction ****chaPter surface failure _ ****. Surface Geometry . ****. Mating Surfaces ****. Friction ****Effect of Roughness on Friction ****Effect of Velocity on Friction ****Rolling Friction ****Effect of Lubricant on Friction xxi****. Adhesive Wear ****The Adhesive-Wear Coefficient ****. Abrasive Wear . ****Abrasive Materials ****Abrasion-Resistant Materials ****. Corrosion Wear . ****Corrosion Fatigue ****Fretting Corrosion ****. Surface Fatigue . ****. Spherical Contact ****Contact Pressure and Contact Patch in Spherical Contact ****Static Stress Distributions in Spherical Contact ****. Cylindrical Contact . ****Contact Pressure and Contact Patch in Parallel Cylindrical Contact ****Static Stress Distributions in Parallel Cylindrical Contact ****. General Contact ****Contact Pressure and Contact Patch in General Contact ****Stress Distributions in General Contact ****. Dynamic Contact Stresses . ****Effect of a Sliding Component on Contact Stresses ****. Surface Fatigue Failure Models—Dynamic Contact ****. Surface Fatigue Strength . ****. Summary . ****. References ****. Problems . ****chaPter finite element analysis ****. Introduction . ****Stress and Strain Computation ****. Finite Element Method ****. Element Types . ****Element Dimension and Degree of Freedom (DOF) ****Element Order ****H-Elements Versus P-Elements ****Element Aspect Ratio ****. Meshing ****Mesh Density ****Mesh Refinement ****Convergence ****. Boundary Conditions ****. Applying Loads . ****. Testing the Model (Verification) ****. Modal Analysis . ****. Case Studies . ****. Summary . ****. References xxii MACHINE DESIGN – An Integrated Approach – Sixth Edition****. Bibliography . ****. Web Resources . ****. Problems . ****Part ii machine design ****chaPter design case studies _ ****. Introduction ****. Case Study —A Portable Air Compressor ****. Case Study —A Hay-Bale Lifter ****. Case Study —A Cam-Testing Machine ****. Summary . ****. References ****. Design Projects . ****chaPter shafts, Keys, and couPlings _ ****. Introduction ****. Shaft Loads . ****. Attachments and Stress Concentrations ****. Shaft Materials ****. Shaft Power . ****. Shaft Loads . ****. Shaft Stresses ****. Shaft Failure in Combined Loading . ****. Shaft Design . ****General Considerations ****Design for Fully Reversed Bending and Steady Torsion ****Design for Fluctuating Bending and Fluctuating Torsion ****. Shaft Deflection ****Shafts as Beams ****Shafts as Torsion Bars ****. Keys and Keyways ****Parallel Keys ****Tapered Keys ****Woodruff Keys ****Stresses in Keys ****Key Materials ****Key Design ****Stress Concentrations in Keyways ****. Splines ****. Interference Fits ****Stresses in Interference Fits ****Stress Concentration in Interference Fits ****Fretting Corrosion xxiii****. Flywheel Design . ****Energy Variation in a Rotating System ****Determining the Flywheel Inertia ****Stresses in Flywheels ****Failure Criteria ****. Critical Speeds of Shafts . ****Lateral Vibration of Shafts and Beams—Rayleigh’s Method ****Shaft Whirl ****Torsional Vibration ****Two Disks on a Common Shaft ****Multiple Disks on a Common Shaft ****Controlling Torsional Vibrations ****. Couplings . ****Rigid Couplings ****Compliant Couplings ****. Case Study B . ****Designing Driveshafts for a Portable Air Compressor ****. Summary . ****. References ****. Problems . ****chaPter Bearings and luBrication _ ****. Introduction ****A Caveat ****. Lubricants . ****. Viscosity . ****. Types of Lubrication ****Full-Film Lubrication ****Boundary Lubrication ****. Material Combinations in Sliding Bearings . ****. Hydrodynamic Lubrication Theory ****Petroff’s Equation for No-Load Torque ****Reynolds’ Equation for Eccentric Journal Bearings ****Torque and Power Losses in Journal Bearings ****. Design of Hydrodynamic Bearings ****Design Load Factor—The Ocvirk Number ****Design Procedures ****. Nonconforming Contacts ****. Rolling-element bearings ****Comparison of Rolling and Sliding Bearings ****Types of Rolling-Element Bearings ****. Failure of Rolling-element bearings ****. Selection of Rolling-element bearings ****Basic Dynamic Load Rating C ****Modified Bearing Life Rating ****Basic Static Load Rating C xxiv MACHINE DESIGN – An Integrated Approach – Sixth Edition****Combined Radial and Thrust Loads ****Calculation Procedures ****. Bearing Mounting Details . ****. Special Bearings ****. Case Study B ****. Summary . ****Important Equations Used in This Chapter ****. References ****. Problems . ****chaPter sPur gears _ ****. Introduction ****. Gear Tooth Theory . ****The Fundamental Law of Gearing ****The Involute Tooth Form ****Pressure Angle ****Gear Mesh Geometry ****Rack and Pinion ****Changing Center Distance ****Backlash ****Relative Tooth Motion ****. Gear Tooth Nomenclature . ****. Interference and Undercutting ****Unequal-Addendum Tooth Forms ****. Contact Ratio . ****. Gear Trains ****Simple Gear Trains ****Compound Gear Trains ****Reverted Compound Trains ****Epicyclic or Planetary Gear Trains ****. Gear Manufacturing ****Forming Gear Teeth ****Machining ****Roughing Processes ****Finishing Processes ****Gear Quality ****. Loading on Spur Gears . ****. Stresses in Spur Gears ****Bending Stresses ****Surface Stresses ****. Gear Materials ****Material Strengths ****Bending-Fatigue Strengths for Gear Materials ****Surface-Fatigue Strengths for Gear Materials ****. Lubrication of Gearing ****. Design of Spur Gears xxv****. Case Study C ****. Summary . ****. References ****. Problems . ****chaPter helical, Bevel, and Worm gears _ ****. Introduction . ****. Helical Gears ****Helical Gear Geometry ****Helical-Gear Forces ****Virtual Number of Teeth ****Contact Ratios ****Stresses in Helical Gears ****. Bevel Gears . ****Bevel-Gear Geometry and Nomenclature ****Bevel-Gear Mounting ****Forces on Bevel Gears ****Stresses in Bevel Gears ****. Wormsets ****Materials for Wormsets ****Lubrication in Wormsets ****Forces in Wormsets ****Wormset Geometry ****Rating Methods ****A Design Procedure for Wormsets ****. Case Study B . ****. Summary . ****. References ****. Problems . ****chaPter sPring design _ ****. Introduction ****. Spring Rate . ****. Spring Configurations . ****. Spring Materials ****Spring Wire ****Flat Spring Stock ****. Helical Compression Springs ****Spring Lengths ****End Details ****Active Coils ****Spring Index ****Spring Deflection ****Spring Rate ****Stresses in Helical Compression Spring Coils ****Helical Coil Springs of Nonround Wire ****Residual Stresses xxvi MACHINE DESIGN – An Integrated Approach – Sixth Edition****Buckling of Compression Springs ****Compression-Spring Surge ****Allowable Strengths for Compression Springs ****The Torsional-Shear S-N Diagram for Spring Wire ****The Modified-Goodman Diagram for Spring Wire ****. Designing Helical Compression Springs for Static Loading . ****. Designing Helical Compression Springs for Fatigue Loading ****. Helical Extension Springs ****Active Coils in Extension Springs ****Spring Rate of Extension Springs ****Spring Index of Extension Springs ****Coil Preload in Extension Springs ****Deflection of Extension Springs ****Coil Stresses in Extension Springs ****End Stresses in Extension Springs ****Surging in Extension Springs ****Material Strengths for Extension Springs ****Design of Helical Extension Springs ****. Helical Torsion Springs ****Terminology for Torsion Springs ****Number of Coils in Torsion Springs ****Deflection of Torsion Springs ****Spring Rate of Torsion Springs ****Coil Closure ****Coil Stresses in Torsion Springs ****Material Parameters for Torsion Springs ****Safety Factors for Torsion Springs ****Designing Helical Torsion Springs ****. Belleville Spring Washers . ****Load-Deflection Function for Belleville Washers ****Stresses in Belleville Washers ****Static Loading of Belleville Washers ****Dynamic Loading ****Stacking Springs ****Designing Belleville Springs ****. Case Study C ****. Summary . ****. References ****. Problems . ****chaPter screWs and fasteners _ ****. Introduction ****. Standard Thread Forms . ****Tensile Stress Area ****Standard Thread Dimensions ****. Power Screws ****Square, Acme, and Buttress Threads ****Power Screw Application ****Power Screw Force and Torque Analysis xxvii****Friction Coefficients ****Self-Locking and Back-Driving of Power Screws ****Screw Efficiency ****Ball Screws ****. Stresses in Threads . ****Axial Stress ****Shear Stress ****Torsional Stress ****. Types of Screw Fasteners . ****Classification by Intended Use ****Classification by Thread Type ****Classification by Head Style ****Nuts and Washers ****. Manufacturing Fasteners ****. Strengths of Standard Bolts and Machine Screws . ****. Preloaded Fasteners in Tension ****Preloaded Bolts Under Static Loading ****Preloaded Bolts Under Dynamic Loading ****. Determining the Joint Stiffness Factor ****Joints With Two Plates of the Same Material ****Joints With Two Plates of Different Materials ****Gasketed Joints ****. Controlling Preload . ****The Turn-of-the-Nut Method ****Torque-Limited Fasteners ****Load-Indicating Washers ****Torsional Stress Due to Torquing of Bolts ****. Fasteners in Shear . ****Dowel Pins ****Centroids of Fastener Groups ****Determining Shear Loads on Fasteners ****. Case Study D ****. Summary . ****. References ****. Bibliography . ****. Problems . ****chaPter Weldments ****. Introduction ****. Welding Processes ****Types of Welding in Common Use ****Why Should a Designer Be Concerned with the Welding Process? ****. Weld Joints and Weld Types . ****Joint Preparation ****Weld Specification ****. Principles of Weldment Design . . Static Loading of Welds ****. Static Strength of Welds ****Residual Stresses in Welds ****Direction of Loading ****Allowable Shear Stress for Statically Loaded Fillet and PJP Welds ****. Dynamic Loading of Welds . ****Effect of Mean Stress on Weldment Fatigue Strength ****Are Correction Factors Needed For Weldment Fatigue Strength? ****Effect of Weldment Configuration on Fatigue Strength ****Is There an Endurance Limit for Weldments? ****Fatigue Failure in Compression Loading? ****. Treating a Weld as a Line ****. Eccentrically Loaded Weld Patterns . ****. Design Considerations for Weldments in Machines . ****. Summary . ****. References ****. Problems . ****chaPter clutches and BraKes ****. Introduction ****. Types of Brakes and Clutches . ****. Clutch/Brake Selection and Specification ****. Clutch and Brake Materials . ****. Disk Clutches ****Uniform Pressure ****Uniform Wear ****. Disk Brakes . ****. Drum Brakes . ****Short-Shoe External Drum Brakes ****Long-Shoe External Drum Brakes ****Long-Shoe Internal Drum Brakes ****. Summary . ****. References ****. Bibliography . ****. Problems . ****aPPendices ****A Material Properties ****B Beam Tables . ****C Stress-Concentration Factors . ****D Answers to Selected Problems . ****index ****doWnloads index _ ****INDEX****arm (epicyclic) ****asperities , , ****ASTM****wire alloy numbers ****autofrettage ****automeshing ****axial tension , ****axis of transmission****gear teeth ****axisymmetric ****B****backdrive , , ****backlash ****ball bearings ****ball screws ****base circle****of gear , , ****of involute ****base units ****beam , , ****assumptions ****cantilever , ****deflection ****centroidal axis ****curved ****stress distribution in ****deflection ****deflection function of ****dummy load ****hollow****shear stress in ****I-beams ****indeterminate , ****loading ****long ****neutral axis ****neutral plane ****overhung ****pure bending ****rectangular ****shear stress in ****round ****shear stress in ****section modulus ****shear, transverse ****sign convention ****simply supported ****spring rate ****statically indeterminate ****straight ****stress distribution in ****tables ****bearing , , ****air ****area ****ball ****angular-contact ****Conrad ****deep-groove ****thrust ****cam follower ****cleanliness ****flange units ****journal , ****clearance ratio ****coefficient of friction in ****eccentricity ****eccentricity ratio , ****lubrication in ****power lost in ****torque in ****linear ****long journal****solution ****Sommerfeld equation ****materials ****babbitt ****bronze ****gray cast iron ****nonmetallic ****needle ****pillow blocks ****plain ****rod ends ****roller , , ****tapered ****rolling-element , , , , ****advantages ****basic dynamic load rating ****basic static load rating ****calculation procedure ****disadvantages ****endurance limit , ****equivalent load ****failure in ****L life ****linear motion ****manufacturing ****materials for ****mounting of ****rating life ****selection of ****tolerance classes ****self-aligning ****short journal ****load factor ****solution ****sleeve , , , ****thrust , ****cylindrical-roller ****hydrostatic ****bearings****A****abrasion . See also wear****controlled ****grinding ****three-body ****two-body ****uncontrolled ****abrasive****particles ****hardness ****sharpness ****wear ****absolute hardness . See also hardness****absolute units system ****accuracy ****Acme thread – , ****stub ****addendum , ****circle ****modification coefficients ****adhesion. See wear: adhesive****adhesive wear****in gear teeth ****AGMA , , , , ****backup ratio ****quality index ****air compressor ****air cylinder ****Almen number ****aluminum ****aircraft ****alloys ****hardenable ****cast ****table of properties ****wrought ****aluminum oxide ****thickness of ****analysis****closed-form ****definition ****first-order ****angle****of approach ****of recess ****angular velocity ratio , ****definition ****anisotropic ****annealing ****anode ****anodizing , , ****hard-coating ****answers to selected problems ****aquaplaning , ****arc of action ****area moment of inertia D****MACHINE DESIGN – An Integrated Approach – Sixth Edition****Belleville washers .****See also springs: Belleville;****See also washers: Belleville****belt drive ****bending****moment ****of shaft ****bimetallic strips ****blobs , ****Boeing Aircraft Co. ****bolts , ****preloaded****dynamic loading ****static loading ****stiffness****equation for ****torsional stress due to torquing ****boron carbide ****boundary conditions , ****boundary element analysis ****boundary lubrication . See also lubrication; See also lubrication:****boundary****brake , ****band ****disc ****disk ****automobile ****caliper ****drum , ****external ****internal shoe ****long-shoe , ****self-deenergizing ****self-energizing ****self-locking ****short-shoe ****eddy current ****friction ****magnetic hysteresis ****magnetic particle ****torque ****Bridgman, W.P. ****Brinell test ****British Comet. See fatigue failure: of British Comet****brittleness , ****bronze ****Buckingham equation ****bushing ****bronze ****buttress thread ****C****CAD , ****multiview drawing ****solid model ****used with FEA ****wireframe model ****cam and follower , ****as effective linkage ****boundary conditions ****minimum number needed ****Case Study A ****Case Study B ****Case Study A ****Case Study B ****Case Study C ****Castigliano’s method****for deflection ****redundant reactions ****Castigliano’s theorem ****cast iron****strengths of, table ****cathode ****ceramics ****chain drive ****Charpy impact test ****circuit****of a linkage , ****circular pitch ****clearance ****Clerk, James Maxwell ****closed-form analysis ****clutch , ****backstop ****centrifugal ****cone ****disk , ****uniform pressure , ****uniform wear , ****eddy current ****friction ****dry ****electromagnetic ****material ****wet ****location ****magnetic hysteresis ****magnetic particle ****multiple disk ****one-way ****overrunning ****positive contact ****roller ****service factors ****sprag ****spring-wrapped ****synchromesh ****coatings ****ceramic ****plasma-sprayed ****chemical ****plasma-spray ****coining ****cold forming , ****cold working , ****collar, clamp ****column ****buckling ****of springs. See springs: helical compression: buckling of****critical unit load ****eccentrically-loaded , ****eccentricity ratio ****end conditions ****fixed-fixed ****B-Spline functions ****dwell****double ****single ****eccentricity ****follower jump ****functions****– – polynomial ****– – – polynomial ****double dwell ****jerk ****normalized variable ****piecewise continuous ****single dwell****symmetric ****single-dwell****asymmetrical ****fundamental law ****polynomial ****advantages ****boundary conditions ****degree ****double-dwell ****order ****single dwell ****pressure angle ****maximum ****prime circle ****radius ****program Dynacam ****radius of curvature ****undercutting ****versus roller radius ****roller radius ****svaj diagram ****timing diagram ****cam followers ****cam-testing machine ****cap screw ****carborundum ****carburizing ****Case Study A ****Case Study B ****Case Study C ****Case Study D ****Case Study A ****Case Study B ****Case Study C ****Case Study D ****Case Study A ****Case Study B ****Case Study C ****Case Study A ****Case Study B ****Case Study C ****Case Study D ****Case Study A ****Case Study B ****Case Study ****Case Study ****Case Study A ****Case Study B ****Case Study C ****Case Study D B D****INDEX ****fixed-free ****fixed-pinned ****Euler formula ****intermediate , ****Johnson ****long ****radius of gyration ****secant formula ****short , ****slenderness ratio , ****Comet aircraft. See fatigue failure:****of British Comet****common****normal ****tangent ****communication ****complex numbers ****composites , ****compound gear train ****compression test ****compressive strength****of cast irons, table ****computer-aided design ****conjugates ****constant-life diagram ****contact patch ****contact pressure ****contact ratio , . See also gearset****axial ****low ****minimum ****transverse ****controlling preload ****copper ****alloys ****pure ****Cornwell, R. , ****corrosion ****fatigue , , , ****fretting ****wear , , ****Coulomb friction. See friction****couplings ****compliant ****bellows ****constant velocity (Rzeppa) ****flexible-disk ****gear/spline ****helical ****jaw ****linkage (Schmidt) ****Oldham ****universal joints ****fluid ****Hooke ****rigid ****clamp collars ****keyed ****setscrew ****Rzeppa ****crack****growth ****in a corrosive environment ****initiation , , ****micro ****propagation , , ****creativity ****creep ****critical frequency ****critical speed ****crossed****mechanism ****cycloidal gear tooth ****D****damping ****dedendum , ****circle ****deflection ****angular ****cantilever beam ****of helical torsion spring ****spring ****degree of freedom ****Den Hartog, J. P. ****derived unit ****design , , ****analysis ****decisions ****documentation ****process , , ****sketches ****diametral pitch ****diamond ****differential ****direct bearing . See also bearing****distortion energy , .****See also von Mises****ellipse ****comparison to experiments ****theory ****DOF****kinematic****removal of ****Dolan ****dowel pins , ****press-fit ****Dowling, N. E. , , ****ductility , ****dynamic force , ****E****effective mass, spring, damping ****Eichinger ****elastic****behavior ****limit ****elastohydrodynamic lubrication ****electroplating ****chrome ****element ****aspect ratio of ****automeshers ****boundaries ****discrete ****finite ****H-elements ****hexahedral ****line ****linear ****order ****P-elements ****quadrilateral ****rigid-body ****shell ****skew of ****surface ****taper of ****tetrahedral ****three-dimensional ****triangular ****truss ****two-dimensional ****volume ****warp of ****wedge ****zero-DOF ****elongation****of alloy steels, table ****of aluminum, table ****of carbon steels, table ****of copper alloys, table ****of plastics, table ****of stainless steel, table ****endurance ****limit , , ****corrected ****correction factors for ****estimating , ****strength , ****endurance strength. See fatigue: strength****energy****kinetic****in shaft ****method ****variation in rotating system ****engineering model ****engineering report ****engineering stress-strain curve ****equation solver , . See also TKSolver****estimation ****Euler’s equations ****Euler’s identity ****even material ****Example – ****Example – , , ****Example – A ****Example – B ****Example – A ****Example – B ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – D****MACHINE DESIGN – An Integrated Approach – Sixth Edition****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****Example – ****F****face width , , ****facewidth factor , ****factor of safety , .****See also safety factor****for gearsets ****guidelines ****of commercial aircraft ****with fluctuating stresses ****fail safe****brake ****definition ****failure****mechanisms ****catastrophic ****shear ****tensile ****molasses-tank ****of Liberty Ships ****of rocket-motor case ****failure theories ****assumptions ****brittle material****static loading ****comparison to experimental data ****Coulomb-Mohr ****distortion-energy ****historical note ****ductile material****static loading ****fatigue ****fracture mechanics ****linear-elastic ****hydrostatic loading ****maximum normal stress ****comparison to experiments ****maximum shear stress ****comparison to experiments ****modified Mohr ****static loading ****total strain energy ****von Mises-Hencky ****false brinelling ****fasteners****centroid of group ****head forming ****in shear ****manufacturing ****preloaded ****screw****classification by head style ****classification by intended use ****classification by thread type ****types of ****shear loads on ****strengths of ****stress concentration in ****torque-limited ****fatigue , ****electroplating in ****endurance limit ****fracture ****in a corrosive environment , ,****, ****loads ****regimes ****high-cycle fatigue , ****low-cycle fatigue , ****strength , ****aluminum, table of ****surface ****stress concentration factor , ****fatigue-crack-growth life ****fatigue failure ****of British Comet ****combined mean and alternating****stress ****cost to the economy ****crack initiation , ****crack propagation , ****estimating criteria for ****Gerber line ****Goodman line ****history of ****in rolling bearings ****mechanism of ****models ****choice of ****linear elastic fracture mechanics ,****, ****strain-life , , ****stress-life , , ****stages of ****sudden fracture ****testing ****actual assemblies ****axial fatigue test , ****cantilever beam ****fully-reversed stress ****rotating-beam test ****torsional loading ****unstable crack growth ****fatigue strength , , .****See also endurance strength****corrected ****effects of loading type on ****effects of reliability on ****effects of size on ****effects of surface finish on ****effects of temperature on ****estimating , ****correction factors for ****fatty acids , ****FEA****applying loads ****automeshers ****boundary conditions ****buckling in ****contact constraints ****direct stiffness method ****dynamic analysis B D****INDEX ****dynamic stresses ****eigenvalues ****eigenvectors ****importing part geometry ****loading models ****mass units in ****mathematical formulations ****model verification ****structural analysis ****used for ****finite element****analysis , , , ****degree of freedom ****mesh ****method****theory of ****model ****models****examples of ****node ****types ****finite-life ****fit****expansion ****interference ****stresses in ****press ****shrink ****flame hardening ****fluctuation****coefficient of , ****fluid couplings ****flywheel ****design ****failure criteria ****inertia ****physical ****stresses in ****foot-pound-second (fps) system ****force****normal ****plough ****force-flow analogy ****force ratio ****forcing frequency ****fourbar crank-slider****offset ****fracture , , , ****fracture mechanics , , ****fracture toughness , , ****free-body diagrams , ****free vibration ****frequency****critical , ****forcing ****fretting , ****fretting corrosion , , ****friction ****coefficient of ****in boundary lubrication ****in clutches/brakes ****in hydrodynamic bearing , ****in roll-slide contact ****in threads ****Coulomb , ****effect of velocity on ****materials ****rolling ****functions****singularity .****See also singularity functions****unit doublet ****unit impulse ****unit parabolic ****unit ramp ****unit step ****fundamental law of gearing ****See also gearing: fundamental law of****fusion ****G****gage length ****galling ****galvanic****action ****cell ****coatings ****series ****gasketed joints ****Gaussian distribution ****gear , ****antibacklash ****base pitch ****bevel****back cone ****crowning factor ****design pinion torque ****forces on ****geometry factors I & J ****operating pinion torque ****spiral ****straight ****stress in , ****blank ****face width. See face width (gears)****helical ****crossed , ****double ****parallel ****stresses in ****herringbone ****idler , ****idler factor ****manufacturing ****burnishing ****finishing ****forming ****grinding ****hobbing ****lapping and honing ****machining ****rack generation ****shaping ****shaving ****materials ****bronzes ****cast irons ****nonmetallics ****steels ****strengths ****mesh geometry ****pinion ****quality ****quality index ****rack ****rack cutter ****ratio ****rim thickness factor ****shaper , ****teeth , ****AGMA bending stress equation ****cycloidal ****elastic coefficient ****fatigue fracture ****friction forces ****full-depth ****geometry factor J , , ****interference ****involute , ****Lewis equation ****load sharing in ****long addendum ****minimum number ****minimum number of , ****radius of curvature ****root fillets ****standard, full-depth ****stresses in ****surface fatigue ****surface finish factor ****surface geometry factor I , ****surface stresses in , ****undercutting ****unequal addendum , .****See also gears: profile-shifted****virtual ****tooth theory ****train ratio ****virtual ****whine ****worm ****lead ****pitch diameter ****single start ****Zerol ****gearbox ****gearing****fundamental law of , ****gears , ****antibacklash ****bending stress ****bevel , ****cold drawing ****form milling ****helical , , ****advantages of ****hypoid ****injection molded ****machining ****profile-shifted , ****spiral bevel D****MACHINE DESIGN – An Integrated Approach – Sixth Edition****spur , ****design of ****surface-contact stresses ****worm , ****wormsets , , ****AGMA power rating ****design procedure ****double-enveloping ****geometry ****lubrication ****materials ****ratios ****self-locking ****single-enveloping ****gearset , ****angle of approach ****angle of recess ****application factor ****arc of action ****backlash , ****contact ratio , , ****definition ****dynamic factor ****external , , ****highest point of single-tooth contact ,****internal , , ****length of action , ****load distribution factor ****loading ****fatigue ****lubrication ****pitch line velocity ****pressure angle ****variation with center distance ****ratio limit ****size factor ****torque ****transmission error ****calculation of ****gear train ****compound ****nonreverted ****reverted ****epicyclic , , ****idler , ****moment on ****kinematic design of ****simple ****Gerber line ****Goodman diagram****modified , ****torsional ****Goodman line , , ****graphite ****Grashof ****Grashof condition ****gravitational****constant , ****system ****gravity****specific****plastics, table of ****Guest, J. ****H****hammer peening ****hard-anodizing .****See also anodizing: hard-coating****hardening ****age ****case , ****case crushing ****subcase fatigue ****cold working ****cyaniding ****flame ****induction ****mechanical , ****nitriding ****precipitation ****strain ****surface ****through ****hardness , ****absolute ****of alloy steels, table ****of aluminum, table ****of carbon steels, table ****of cast irons, table ****of copper alloys, table ****of stainless steel, table ****surface , ****hay-bale lifter ****heat treating ****nonferrous ****tempering. See tempering****helical overlap ****helix angle , ****Hencky , . See also von Mises****herringbone gear ****Hertz, H. ****Hertzian stress , ****high-cycle fatigue ****hob (gear) ****Holzer’s method , ****homogeneity , ****Hooke’s law , ****hot-working ****hovercraft , ****Hueber ****hunting ****hydraulic cylinder ****hydrogen embrittlement ****hydrostatic loading ****I****impact ****loading ****force impact ****striking impact ****resistance ****testing ****inch-pound-second (ips) ****indeterminate beam ****indexing mechanisms ****indices of merit ****induction hardening ****infinite life ****interference ****fit ****stress concentration in ****stresses in ****torque transmitted ****investment casting .****See also manufacturing methods;****involute , , , ****definition ****teeth ****isotropic ****isotropy , ****iteration , ****Izod impact test ****J****jacks ****joint****aspect ratio ****constant , ****separation ****stiffness factor****determining ****joints****gasketed ****confined ****unconfined ****of different materials ****K****key , ****design ****materials ****parallel ****stresses ****bearing ****shear ****tapered ****woodruff , ****keyway ****stress concentration ****kinematics****definition ****Kuhn-Hardrath formula ****Kutzbach ****equation ****paradox ****L****Lanchester damper ****laser peening ****laybar ****lead , ****angle****power screw ****worm ****of a thread ****lead screw , B D****INDEX ****length of action , ****Liberty ships. See failure: of Liberty Ships****linear actuators ****links ****Littman and Widner ****loading****classes , , , ****dynamic ****fatigue , , ****impact ****impact. See impact loading****pure shear ****pure torsional , ****assumptions for ****rotating machinery ****service equipment ****static ****load sharing ****ratio ****low-cycle fatigue , ****lubricant ****gaseous ****grease ****liquid , , ****extreme pressure (EP) , , ,****, , , , ****solid , ****solid-film ****viscosity ****absolute ****kinematic ****lubrication. See lubrication: boundary****boundary , , , ,****, , ****definition ****elastohydrodynamic , , ****definition ****film thickness , , , ****partial ****specific film thickness , ****full-film , ****hydrodynamic , , , , ****hydrostatic , , ****water film ****mixed film ****definition ****of gearsets , ****of nonconforming contacts , ,****oil whirl ****squeeze-film ****theory ****hydrodynamic ****lumped mass ****M****machine****definition ****screw ****magnesium ****malleable iron ****manufacturing methods****forming****drawing ****extrusion ****forging ****material ****anisotropic ****bearing ****brittle****stress concentration in ****brittleness ****cast****stress concentration in ****compatibility ****composites , ****cracks in , ****ductile****strength of ****stress concentration in ****ductility ****even and uneven , ****failure ****for springs ****fracture toughness ****hardness ****homogeneous , , ****isotropic , , ****properties ****affected by temperature ****mechanical ****of whiskers ****pure ****statistical nature of ****tables of ****shaft ****sintered ****test****bending ****compression ****impact ****rotating-beam ****shear ****tensile , ****torsion , ****testing ****uneven and even ****materials****abrasion-resistant ****mathematical models ****matrix-reduction computer program ****maximum shear stress****in Hertzian contact , ****mean ****mechanical****advantage , ****prestressing ****properties ****mechanism****acceleration****of a point on a link ****angular velocity ratio ****auto suspension ****cam and follower ****cam-follower systems ****change point , ****circuits , ****crossed ****definition ****effective links ****efficiency ****fourbar****acceleration difference equation ****acceleration equation ****analysis ****crank-slider ****crossed ****open ****position equation ****slider-crank ****velocity equation ****fourbar crank-slider****acceleration equation ****analysis ****position equation ****velocity equation ****geared fivebar ****Grashof ****crank-rocker ****double-crank ****double-rocker ****equation ****internal combustion engine ****inversions ****definition ****inverted crank-slider ****joint****definition ****full ****half ****prismatic ****revolute ****Kutzbach****equation ****paradoxes ****Kutzbach equation ****links ****binary ****quaternary ****ternary ****mechanical advantage ****multi-DOF ****nodes ****non-constant velocity ****one-DOF ****open ****other linkages ****parallelogram ****piston pump ****power in ****program Linkages ****sixbar ****Stephenson ****Watt ****special-case Grashof ****torque ratio ****vector-loop method ****mesh****convergence ****density ****refinement D****MACHINE DESIGN – An Integrated Approach – Sixth Edition****metal****cast iron ****ductile ****gray ****nodular ****white ****coatings ****corrosion ****electroplatable ****grain ****structure ****noble ****properties ****sintered , ****surface treatments ****microcrack ****microhardness tests ****mks system ****mobility****equation ****modal analysis ****model****engineering ****physical ****modified Goodman diagram , .****See also Goodman diagram: modified; See also Goodman line****module , , ****modulus****of elasticity ****of elasticity, table of****plastics ****of rigidity , ****of rupture ****MOHR computer program ****Mohr plane ****Mohr’s circle , , , , ****for even and uneven materials ****for hydrostatic test ****for tensile test****brittle material ****ductile material ****for torsion test , ****moisture ****molasses tank rupture.****See failure: molasses-tank****moment ****M/EI function ****moment of inertia****definition ****polar****of shaft ****motion****complex ****rotation ****translation ****N****Nadai ****natural frequency****fundamental ****multiple , ****of compression springs ****torsional****of shaft ****Neuber constant ****Neuber’s equation ****neutral axis , ****Newton’s laws****first law ****second law , ****third law ****nitriding ****node ****nodes ****nodular iron ****nonmetallic materials ****ceramics ****composites ****polymers ****thermoplastic ****thermosetting ****properties , ****normal force ****normalizing ****notch , ****sensitivity ****nuts , , , ****acorn ****castle ****hex ****jam ****lock ****minimum length ****wing ****O****octahedral stresses.****See distortion energy;****See also von Mises****Ocvirk****equation ****number , , ****open****mechanism ****oxidation ****P****Paris equation ****particle size ****Peterson, R. E. ****Petroff’s equation ****phosphates ****photoelastic stress analysis ****pillow blocks ****pin , ****taper , ****pinion , ****pitch****axial ****circle , , , ****virtual ****circular . See also circular pitch****normal ****diameters , ****diametral , , , , ,****, . See also diametral pitch****in normal plane ****point , ****pitting , ****of gear teeth ****of rolling bearings ****plane****strain ****stress ****plane strain ****plane stress ****planet gear ****plastic-behavior ****plastics****maximum temperature, table ****plating electroless ****Poisson’s ratio , ****Poncelet ****pounds force (lbf) ****pounds mass (lbm) ****power screw , ****back driven ****self-locking ****torque in ****power, shaft ****preload ****controlling in bolts ****preloaded****bolts ****fasteners ****preloaded structure ****press-fit ****dowel pins ****pressure angle ****cam-follower****flat-faced ****of gearsets , , ****normal ****transverse ****of wormsets ****principal stresses , .****See also stress: principal****profilometer ****proof strength ****proportional limit ****prototype ****Q****quenching ****R****Rabinowicz, E. ****rack ****and pinion ****steering ****cutter ****helical ****radius of curvature ****undercutting ****radius of gyration B D****INDEX ****Rayleigh-Ritz method ****Rayleigh’s method , ****residual stresses , ****compressive ****resilience ****resonance , ****Reynolds’ equation , ****ring gear ****rocket motor case.****See failure: of rocket-motor case****Rockwell test ****rod end ****roll-bonding ****roller bearings ****rollers ****crowned ****logarithmic curve ****stress concentration in ****rolling****cylinders , ****rolling contact****combined rolling and sliding ****gear teeth ****contact patch ****half-width , ****semi-ellipsoid ****contact pressure ****contact stress****subsurface shear stress , ****cylinder-on-cylinder ****cylindrical contact ****geometry constant ****Hertzian stress ****stress distribution ****material constants ****pit formation ****pitting ****semi-ellipsoid****pressure distribution ****sphere-on-sphere ****rolling-element bearings ****rolls****nip , ****rotating-beam test , ****rotating machinery ****loading in ****R. R. Moore rotating-beam test ****S****SAE****wire alloy numbers ****safety factor , ****fluctuating stress , ****preloaded bolts****dynamic loading ****screw ****efficiency ****lead , ****power , ****torque to lower load ****torque to raise load ****torsional stress in ****screws****ball ****self-drilling ****self-tapping ****slotted ****socket cap ****tapping ****thread-cutting ****thread-forming ****second moment of area ****polar ****section modulus ****self-locking , ****of a lead screw ****of a worm ****SEMS ****SEQA equation ****servo****mechanisms ****motor ****shaft ****as a beam ****as a torsion bar ****critical speed ****deflections , , ****dynamic ****design ****ASME method ****hardened ****hollow , ****key ****loading ****time-varying ****natural frequency , ****stepped , , ****effective spring constant ****stresses , ****transmission , ****vibration ****lateral , ****torsional ****whirl , , ****shear ****area ****direct ****double ****single ****torsional ****transverse, in beams , ****shot peening , , , ****significant figures ****silicon carbide ****Simpson’s rule ****Sines equation , ****singularity functions , .****See also functions: singularity****SI system ****slop ****slugs , ****Smith and Lui ****snap-ring , ****S-N diagram ****estimated ****knee of ****Sommerfeld number ****space width (gears) ****spalling , , ****of rolling bearings ****specific****film thickness ****gravity****plastics, table of ****stiffness ****strength ****splines ****sprag ****spreadsheet ****spring****constant ****torsional , ****flat****bend factor ****flat-strip stock ****materials ****rectangular wire ****wire ****spring index , ****spring rate , , , ****combined ****in parallel ****in series ****helical compression spring ****helical extension springs ****springs , ****beam ****Belleville ****designing ****dynamic loading ****load-deflection relationship ****stacking ****static loading ****stresses in ****cantilever ****clock ****helical compression , ****active coils ****assembled length ****barrel ****buckling of ****clash allowance ****conical ****designing for dynamic loads ****designing for static loads ****direct shear factor ****end details ****free length ****hourglass ****mean coil diameter ****natural frequency of ****residual stresses ****setting ****shut height , ****spring rate ****stresses in ****surging ****torsional fatigue strength ****torsional yield strength ****helical extension , ****active coils ****coil preload D****MACHINE DESIGN – An Integrated Approach – Sixth Edition****deflection ****design of ****drawbar ****hooks and loops ****spring rate ****stresses in ****helical torsion , ****active coils ****coil closure ****design of ****spring rate ****stress in ****in series ****load reversal in ****motor ****power ****shot-peening of ****variable rate ****volute ****Wahl’s factor for ****washers ****square thread ****standard deviation ****static load analysis ****static strength ****statistical considerations ****steel****alloy ****strengths of, table ****cast ****cold-rolled ****hot-rolled ****numbering systems ****plain carbon ****strengths of, table ****stainless ****series ****series ****austenitic ****martensitic ****strengths of, table ****tool ****strengths of, table ****wrought ****stepping motor ****stiffness****of a joint****determining ****specific , , ****stiffness constant****of a joint ****stiffness matrix ****reduced ****straight-eight engine ****straight-line linkage ****strain , , ****plane ****strain energy , , , ****components of ****strength****bending fatigue****of spring wire ****compressive ****creep ****endurance ****fatigue , ****impact ****of screw fasteners ****of various materials, tables ****proof. See proof strength****shear yield , ****specific ****tensile ****torsional fatigue****of spring wire , ****torsional yield****of helical spring wire ****to-weight ratio ****ultimate tensile ****as function of hardness ****ultimate torsion ****as function of tensile strength ****yield , ****brittle material ****strength-to-weight ratio ****stress , , ****-D , ****-D ****alternating component ****amplitude ratio ****applied , ****as a function of time , ****bearing ****combined ****concentration , , , , ****at notches ****designing to avoid ****due to notches ****dynamic loads , ****geometric , ****static loads ****torsional ****concentration factor****in threads ****concentration factors ****contact ****corrosion , ****cubic polynomial ****cyclic ****effective , ****Dowling ****von Mises ****fluctuating ****designing for ****design steps for ****fully reversed , ****designing for ****Hertzian , , ****induced ****in gears****helical ****spur ****intensity factor , ****range ****maximum bending ****maximum shear , ****mean component ****multiaxial****designing for in fatigue , ****fluctuating ****fully-reversed ****nominal , ****normal , ****octahedral ****plane ****principal , , ****raisers , ****range ****ratio ****repeated ****residual , ****methods for introducing ****residual compressive , , , ****shafts ****shear , , ****tensile ****thermal ****von Mises , , ****stress analysis****photoelastic ****stress concentration , , ****factors ****fatigue ****geometric , ****with fluctuating stress ****stress-corrosion , ****stress intensity factor.****See stress: intensity factor****stress-strain curve ****stress-time functions , ****structure ****stud ****stylus ****sulfides ****sun gear ****surface****asperities ****coatings ****compressive stresses , ****contaminants ****crack initiation****inclusion origin ****fatigue , , , , ****strength ****subcase failure ****USM Corp test data ****peeling ****pitting ****effect of lubricant ****fatigue ****point surface origin ****subsurface cracks ****polishing ****roughness , , ****composite ****effect on friction ****parameters ****skewness ****waviness ****scoring ****scuffing B D****INDEX ****spalling ****treatments ****autofrettage ****coining ****cold forming , ****mechanical prestressing ****shot peening , ****synthesis ****system****discrete ****T****tapping screws ****tear-out ****teeth****virtual ****Teflon ****temperature ****effects ****maximum for plastics ****recrystallization ****tempering ****tensile strength ****of alloy steels, table ****of aluminums, table ****of carbon steels, table ****of cast irons, table ****of copper alloys, table ****of plastics, table ****of stainless steel, table ****tensile test , , , ****thread ****Acme , ****Acme stub ****buttress ****class of fit ****cutting ****lead angle ****minimum nut length ****minimum tapped hole engagement ****multiple ****multiple-start ****pitch ****rolling****advantages of ****specification ****square , ****standard ****dimensions ****stress ****stripping-shear area ****tensile-stress area ****Unified National Standard (UNS) ****coarse series ****extra fine series ****fine series ****threads****stress-concentration in ****stresses in ****axial ****shear ****thrust bearing ****ball or roller ****hydrostatic ****titanium ****tooth thickness ****torque ****coefficient ****converter ****fluctuating ****needed for preload ****pinion ****ratio , ****repeated ****-time function ****wrench ****torsion , , , ****in circular cross-sections ****in noncircular cross-sections ****test , , ****torsional damper ****toughness ****trade-offs ****train ratio ****transmission ****automotive , , , ****trapezoidal rule ****Tresca ****true stress-strain curve ****tumbling ****tuned absorber ****turn-of-the-nut method ****U****ultimate compressive strength****of cast irons, table ****of plastics, table ****ultimate tensile strength ****of alloy steels, table ****of aluminum, table ****of carbon steels, table ****of cast irons, table ****of copper alloys, table ****of plastics, table ****of stainless steel, table ****undercutting , ****uneven material ****uniaxial stress state ****units ****units systems ****unstructured problem ****U.S. units system ****V****vector loop equation ****vee-eight engine ****velocity****ratio , ****of involute gears ****vibration ****self-excited ****torsional****controlling ****torsional damper ****tuned absorber ****Vickers hardness test ****virtual****gear ****teeth ****viscosity , ****absolute , ****units of ****kinematic ****units of ****von Mises , , , ****W****washers , ****Belleville , , ****fender ****load-indicating ****lock ****water-jet ****Way, S. ****wear ****abrasive , , , ****adhesive , , ****in gear teeth ****corrosive ****Weibull distribution ****weight ****weld****area ****as a line ****atomic cleanliness ****backing strip ****eccentric loading ****electrode****numbering ****failure****from compression stress ****filler metal ****fusion ****groove****size ****HAZ ****heat affected zone ****hydrogen embrittlement ****joint****butt ****corner ****edge ****lap ****preparation ****shapes ****tee ****leg width ****metal ****fatigue strength of ****overmatching ****parent metal ****penetration ****complete ****partial ****reinforcement ****safety factor****static MACHINE DESIGN – An Integrated Approach – Sixth Edition****slag ****specification ****strength****endurance ****fatigue ****fatigue safety factor ****reliability factors ****static ****testing ****stress****dynamic ****mean ****range ****residual , ****static ****static allowable ****throat ****throat width ****type ****fillet ****groove ****laser ****plug ****seam ****slot ****spot ****undermatching ****welding****codes ****electrode ****gas ****symbol ****type****arc ****FCAW ****GMAW ****GTAW ****MIG ****resistance ****SAW ****SMAW ****TIG ****welding, cold ****weldment****categories ****cost ****design considerations ****design principles ****wire****rectangular ****square ****strength as function of size ****Wohler****August ****strength-life diagram , ****worm****gear ****wheel ****wrench****pneumatic impact ****torque ****error in preload ****writing engineering reports ****wrought ****Y****yield ****point ****strength ****of alloy steels, table ****of aluminum, table ****of carbon steels, table ****of copper alloys, table ****of stainless steel, table ****Young’s modulus , , , ****tables , ****Z****Zimmerli, F. P. MACHINE DESIGN – An Integrated Approach – Sixth Edition****VIDEOS****See the Video Contents.****TUTORIALS****Excel Path: Tutorials \ Excel Tutorial****Excel Intro.doc An introduction to Excel with example files and detailed explanations.****Mathcad Path: Tutorials \ Mathcad Tutorial****Mathcad Intro.pdf An introduction to Mathcad with example files and detailed explanations.****MATLAB Path: Tutorials \ MATLAB Tutorial****MATLAB Intro.doc An introduction to MATLAB with example m-files and detailed explanations.****TKSolver Path: Tutorials \ TKSolver Tutorial****TKSolver Intro.pdf An introduction to TK Solver with example files and detailed explanations.****MODEL FILES – EXAMPLES****Examples Path: Excel Files \ Excel Examples \ Chap_No****Path: Mathcad Files \ Mathcad Examples \ Chap_No****Path: MATLAB Files \ MATLAB Examples \ Chap_No****Path: TKSolver Files \ TKSolver Examples \ Chap_No****Path: PDF Files \ Examples \ Chap_No****EX ‑ * An example that determines a material’s modulus of elasticity and yield strength from****test data.****EX ‑ A Example of impact of a mass against a horizontal rod in axial tension. Examines and****plots the sensitivity of the impact force to the length/diameter ratio of the rod for a****constant mass ratio. (See Figure – .)****EX ‑ B Example of impact of a mass against a horizontal rod in axial tension. Examines****and plots the sensitivity of the impact force to the mass ratio of the rod for a constant****length/diameter ratio. (See Figure – .)****EX ‑ Calculates the loading, shear, and moment functions for a simply supported beam****with a uniformly distributed load over a portion of its length ending at one support.****Finds reactions and plots the beam functions. (See Figure – a.)****EX ‑ Calculates the loading, shear, and moment functions for a cantilever beam with a****concentrated load at any point along its length. Finds reactions and plots the beam****functions. (See Figure – b.)****EX ‑ Calculates the loading, shear, and moment functions for an overhung beam with a****moment load at any point along its length and with a ramp load over a portion of its****length beginning at one support. Finds reactions and plots the beam functions. (See****Figure – c.)****EX ‑ † Solves the stress cubic and finds the principal stresses and maximum shear for given****values. Is same program as STRESS D with data for this example. (See Figure – .)****EX ‑ † Solves the stress cubic and finds the principal stresses and maximum shear for given****values. Is same program as STRESS D with data for this example. (See Figure – .)****EX ‑ † Solves the stress cubic and finds the principal stresses and maximum shear for given****values. Is same program as STRESS D with data for this example. (See Figure – .)****† These examples are also****solved with program Mohr.****Their files (EX -xx.MOH) can****be found in the folder PROGRAM FILES \ MOHR.***** No TK Solver file for this one.INDEX OF SOFTWARE ON BOOK’S WEBSITE ****EX ‑ Calculates the shear, moment, slope, and deflection functions for a simply supported****beam with a uniformly distributed load over a portion of its length ending at one support. Finds reactions, plots the beam functions, and finds max and min values. (See****Figure – a.)****EX ‑ Calculates the shear, moment, slope, and deflection functions for a cantilever beam****with a concentrated load at any point along its length. Finds reactions, plots the beam****functions, and finds their max and min values. Is the same program as CANTCONC****with data for this example. (See Figure – b.)****EX ‑ Calculates the shear, moment, slope, and deflection functions for an overhung beam****with a concentrated load at any point along its length and with a uniformly distributed****load over a portion of its length beginning at one support. Finds reactions, plots the****beam functions, and finds their max and min values. (See Figure – c.)****EX ‑ Calculates the shear, moment, slope, and deflection functions for a statically indeterminate beam with a uniformly distributed load over a portion of its length. Finds****reactions, plots the beam functions, and finds their max and min values. (See Figure****– d.)****EX ‑ Calculates the shear, moment, slope, and deflection functions for a statically indeterminate beam with a uniformly distributed load over its length using Castigliano’s****method. Finds reactions, plots the beam functions, and finds their max and min****values. (See Figure – e.)****EX ‑ Determines the best cross-sectional shape for a hollow bar loaded in pure torsion.****(See Figure – .)****EX ‑ Calculates the stresses due to combined bending and torsional loading. (See Figure****– .)****EX ‑ C* Designs columns in circular cross sections for concentric loading using both Johnson****and Euler criteria to find critical load, weight, and safety factor. Is the same program****as COLMNDES with data for this example. (See Figure – .)****EX ‑ S Designs columns in square cross sections for concentric loading using both Johnson****and Euler criteria to find critical load, weight, and safety factor. Is same program as****COLMNDES with data for this example. (See Figure – .)****EX ‑ Calculates the principal and von Mises stresses for a bracket made of ductile material****and loaded in combined bending and torsion. Finds the safety factors based on the****distortion-energy and maximum-shear-stress theories. (See Figure – .)****EX ‑ Calculates the principal and von Mises stresses for a bracket made of brittle material****and loaded in combined bending and torsion. Finds the safety factors based on the****modified-Mohr theory. (See Figure – .)****EX ‑ Calculates the fracture mechanics failure criteria for a cracked part. Compares the****fracture-mechanics failure stress with a yield failure. (See Figure – .)****EX ‑ Calculates the corrected endurance strength of ferrous metals based on supplied data****about finish, size, strength, etc., and draws an estimated S‑N diagram for supplied****levels of alternating and mean stresses. Is the same program as S_NDIAGM with****data for this example. (See Figure – .)****EX ‑ Calculates the corrected endurance strength of nonferrous metals based on supplied****data about finish, size, strength, etc., and draws an estimated S‑N diagram for supplied****levels of alternating and mean stresses. Is the same program as S_NDIAGM with****data for this example. (See Figure – .)****EX ‑ Finds the fatigue stress-concentration factor for a part of known material and geometry. (See Figure – or Figure E- .)****EX ‑ A† Design of a cantilever bracket for fully reversed bending—part a: an unsuccessful****design. (See Figure – .)****EX ‑ B Design of a cantilever bracket for fully reversed bending—part b: a successful design.****(See Figure – .)****EX ‑ A‡ Design of a cantilever bracket for fluctuating bending—part a: an unsuccessful design. (See Figure – .)***** The Mathcad solution to this****example is labeled EX – ,****and it contains both the square****and circular column crosssection solutions.****† The Mathcad solutions to this****example are labeled EX – ****and EX- – A. The latter****model shows an alternate approach to the solution than that****which is shown in the text and in****the TK Solver files.****‡ The Mathcad solution to this****example is labeled EX – . MACHINE DESIGN – An Integrated Approach – Sixth Edition****‡ An alternate approach to****the solution of this problem is****presented in the Mathcad file****EX – xA.****EX ‑ B Design of a cantilever bracket for fluctuating bending—part b: a successful design.****(See Figure – .)****EX ‑ Design of a cantilever bracket for multiaxial stresses in fatigue. (See Figure – .)****EX ‑ Stresses in a ball thrust bearing. Uses SURFSPHR to calculate surface stresses in a****spherical-flat contact. (See Figure – .)****EX ‑ Stresses in cylindrical contact. Uses SURFCYLZ to calculate surface stresses in a****wheel-on-rail contact. (See Figure – .)****EX ‑ Stresses in general contact. Uses SURFGENL to calculate surface stresses in a****crowned cam-follower contact. (See Figure – .)****EX ‑ Stresses in combined rolling and sliding in cylindrical contact. Uses SURFCYLX to****calculate surface stresses in a nip-roller contact. (See Figure – .)****EX ‑ Safety factor in combined rolling and sliding in cylindrical contact problem of Example – . Uses data from Table – . (See Figure – .)****EX ‑ Deflection of a cantilever beam. (See Figure – .) (TK Solver file only)****EX ‑ Shaft design for steady torsion and fully reversed bending (parts a to d). (See Figure****– .)****EX ‑ Shaft design for repeated torsion combined with repeated bending (parts a to d). (See****Figure – .)****EX ‑ Designing a stepped shaft to minimize deflection. (See Figure – .)****EX ‑ Designing shaft keys—parts a to d. (See Figure – .)****EX ‑ A Designing shaft keys—an alternate approach. (See Figure – .)****EX ‑ Designing an interference fit—parts a and b. (See Figure – .)****EX ‑ Designing a solid-disk flywheel—parts a and b. (See Figure – .)****EX ‑ Determining the critical frequencies of a shaft—parts a and b. (See Figure – .)****EX ‑ Sleeve-bearing design—parts a and b. (See Figure – .)****EX ‑ Lubrication in a crowned cam-follower interface. (See Figure – .)****EX ‑ Selection of ball bearings for a designed shaft.****EX ‑ Selection of ball bearings for combined radial and thrust loads.****EX ‑ Determining gear tooth and gearmesh parameters. (See Figure – .)****EX ‑ Analyzing an epicyclic-gear train. (See Figure – .)****EX ‑ Load analysis of a spur-gear train. (See Figure – .)****EX ‑ Bending stress analysis of a spur-gear train. (See Figure – .)****EX ‑ Surface stress analysis of a spur-gear train. (See Figure – .)****EX ‑ Material selection and safety factor for spur gears—parts a and b. (See Figure – .)****EX ‑ Stress analysis of a helical-gear train. (See Figure – .)****EX ‑ Stress analysis of a bevel-gear train. (See Figure – .)****EX ‑ ‡ Design of a helical compression spring for static loading—parts a and b. (See Figure****– .)****EX ‑ ‡ Design of a helical compression spring for cyclic loading—parts a and b. (See Figure****– .)****EX ‑ Design of a helical extension spring for cyclic loading—parts a and b. (See Figure****– .)****EX ‑ Design of a helical torsion spring for cyclic loading. (See Figure – .)****EX ‑ Design of a Belleville spring for static loading. (See Figure – .)INDEX OF SOFTWARE ON BOOK’S WEBSITE ****EX ‑ Torque and efficiency of a power screw—parts a and b. (See Figure – .)****EX ‑ Preloaded fasteners in static loading. (See Figure – .)****EX ‑ Preloaded fasteners in dynamic loading. (See Figure – .)****EX ‑ Determining material stiffness and the joint constant. (See Figure – .)****EX ‑ Determining the torque needed to generate a bolt preload. (See Figure – .)****EX ‑ Fasteners in eccentric shear. (See Figure – .)****EX ‑ Design of a statically loaded fillet weld.****EX ‑ Design of a dynamically loaded fillet weld.****EX ‑ Design of a statically loaded weldment assembly.****EX ‑ Design of a dynamically loaded weldment assembly.****EX ‑ Design of an eccentrically loaded weldment assembly.****EX ‑ Design of a disk clutch. (See Figure – .)****EX ‑ Design of a short-shoe drum brake—parts a and b. (See Figure – .)****EX ‑ Design of a long-shoe drum brake. (See Figure – .)****MODEL FILES – CASE STUDIES****Case Studies Path: Excel Files \ Excel Cases \ CaseNo****Path: Mathcad Files \ Mathcad Cases \ CaseNo****Path: MATLAB Files \ MATLAB Cases \ CaseNo****Path: TKSolver Files \ TKSolver Cases \ CaseNo****Path: PDF Files \ Case Studies \ CaseNo****CASE A† Case study of the force analysis of a bicycle brake lever under static, -D loading.****Finds reaction forces. See Chapter and Figure – .****CASE B Case study of the stress and deflection analysis of a bicycle brake lever under static,****-D loading. Finds and plots the beam functions, shear, moment, and deflection and****determines stresses at particular locations. See Chapter and Figure – .****CASE C Case study of the stress and deflection analysis of a bicycle brake lever under static,****-D loading. Finds safety factors at particular locations. See Chapter and Figure****– .****CASE A† Case study of the force analysis of a hand crimping tool under static, -D loading.****Finds reaction forces. See Chapter and Figure – .****CASE B‑x Case study of the stress and deflection analysis of a hand crimping tool under static,****-D loading. Finds and plots the beam functions, shear, moment, and deflection and****determines stresses at particular locations. See Chapter and Figure – .****CASE C‑x Case study of the failure analysis of a hand crimping tool under static, -D loading.****Finds the safety factors at particular locations. See Chapter and Figure – .****CASE A† Case study of the force analysis of a scissors jack under static, -D loading. Finds****reaction forces. See Chapter and Figure – .****CASE B‑x Case study of the stress and deflection analysis of a scissors jack under static, -D****loading. Finds and plots the beam functions, shear, moment, and deflection and determines stresses at particular locations. See Chapter and Figure – .****CASE C Case study of the failure analysis of a scissors jack under static, -D loading. Finds****the safety factors at particular locations. See Chapter and Figure – .****CASE A† Case study of the force analysis of a bicycle brake arm under static, -D loading.****Finds reaction forces. See Chapter and Figure – .****† These case studies are also****solved with program Matrix.****Their files (CASExx.mtr) can be****found in the folder PROGRAM****FILES \ MATRIX. MACHINE DESIGN – An Integrated Approach – Sixth Edition****CASE B Case study of the stress and deflection analysis of a bicycle brake arm under static,****-D loading. Finds and plots the beam functions, shear, moment, and deflection and****determines stresses at particular locations. See Chapter and Figure – .****CASE C Case study of the failure analysis of a bicycle brake arm under static, -D loading.****Finds the safety factors at particular locations. See Chapter and Figure – .****CASE A Case study of the force analysis of a fourbar linkage under dynamic, -D loading.****Finds theoretical reaction forces. See Chapter and Figure – .****CASE ‑x Eight files (– through – ) for a case study of the fatigue analysis and redesign of a****failed power-loom laybar under dynamic, -D loading. See Chapter and Figure****– .****CASE A Design of an engine-powered air compressor. This file sets up the design problem.****See Chapter and Figure – .****CASE B‑x Design of an engine-powered air compressor. These files (- , – ) design the****transmission shafts connecting the engine and compressor. See Chapter and Figure – .****CASE C‑x Design of an engine-powered air compressor. These files (- , – ) design the spur****gears connecting the engine and compressor. See Chapter and Figure – .****CASE D Design of an engine-powered air compressor. These files (- , – ) design the headbolts for the compressor. See Chapter and Figure – .****CASE A‑x Design of a hay-bale lifter. These files (- , – ) set up the design problem. See****Chapter and Figure – .****CASE B‑x Design of a hay-bale lifter. These files (- , – ) design a worm and worm gear for****the speed reducer. See Chapter and Figure – .****CASE B Design of a cam test machine. This file designs the hydrodynamic sleeve bearings for****the camshaft. See Chapter and Figures – and – .****CASE C‑x Design of a cam test machine. These files (- , – ) design the coil spring for the****cam follower. See Chapter and Figure – .****MODEL FILES – GENERAL****Beams Path: TKSolver Files \ TKSolver General \ Beams****BEAMFUNC A collection of rule functions for various beam loadings and supports for use in****programs. Can be combined for superposition of loads on any beam with consistent****constraints. (See Figure – .)****CANTCONC Calculates the shear, moment, slope, and deflection functions for a cantilever beam****with a concentrated load at any point along its length. Finds reactions, plots the beam****functions, and finds their max and min values. (See Figure – b.)****CANTCONC Calculates the shear, moment, slope, and deflection functions for a cantilever beam****with three concentrated loads at any points along its length. Finds reactions, plots the****beam functions, and finds their max and min values.****CANTMOMT Calculates the shear, moment, slope, and deflection functions for a cantilever beam****with moment loads at points along its length. Finds reactions, plots the beam functions, and finds their max and min values.****CANTUNIF Calculates the shear, moment, slope, and deflection functions for a cantilever beam****with a uniform load along its length. Finds reactions, plots the beam functions, and****finds their max and min values. (See Figure – a.)****CURVBEAM Calculates eccentricity of neutral axis and stresses for curved beams of various cross****sections—ellipse, circle, square, rectangular, and trapezoidal. (See Figure – .)****INDTUNIF Calculates the shear, moment, slope, and deflection functions for an indeterminate****beam with a uniformly distributed load over a portion of its length ending at one supINDEX OF SOFTWARE ON BOOK’S WEBSITE ****port. Finds reactions, plots the beam functions, and finds max and min values. (See****Figure – d.)****OVHGCONC Calculates the shear, moment, slope, and deflection functions for an overhung beam****with a concentrated load at any point along its length. Finds reactions, plots the beam****functions, and finds their max and min values. (See Figure – c.)****OVHGMOMT Calculates the shear, moment, slope, and deflection functions for an overhung beam****with a moment load at any point along its length. Finds reactions, plots the beam****functions, and finds their max and min values.****OVHGUNIF Calculates the shear, moment, slope, and deflection functions for an overhung beam****with a uniformly distributed load over a portion of its length beginning at one support****and with an optional concentrated load at any point along its length . Finds reactions,****plots the beam functions, and finds their max and min values. (See Figure – c.)****SIMPCONC Calculates the shear, moment, slope, and deflection functions for a simply supported****beam with a concentrated load at any point along its length. Finds reactions, plots the****beam functions, and finds their max and min values.****SIMPUNIF Calculates the shear, moment, slope, and deflection functions for a simply supported****beam with a uniformly distributed load over a portion of its length ending at one support. Finds reactions, plots the beam functions, and finds max and min values. (See****Figure – a.)****Bearings Path: TKSolver Files \ TKSolver General \ Bearings****BALL A ball-bearing selection program that calculates the L life for series ball bearings under specified loads. Based on data from the SKF bearing catalog. (See Figure****– .)****BALL A ball-bearing selection program that calculates the L life for series ball bearings under specified loads. Based on data from the SKF bearing catalog. (See Figure****– .)****EHD_BRNG Solves for film pressure in general elastohydrodynamic (EHD) contact between****lubricated, nonconforming surfaces. Also finds the minimum oil-film thickness. (See****Figure – .)****SLEEVBRG Calculates the film thickness, eccentricity, and oil pressure in a short (Ocvirk) sleeve****bearing under hydrodynamic lubrication conditions. (See Figure – .)****Clutch/Brake Path: TKSolver Files \ TKSolver General \ ClchBrak****DISKCLCH Designs a disk clutch for uniform wear. Allows single or multiple disks. (See Figure****– .)****LONGDRUM Designs a long-shoe drum brake. (See Figure – .)****SHRTDRUM Designs a short-shoe drum brake. (See Figure – .)****Columns Path: TKSolver Files \ TKSolver General \ Columns****COLMNDES A column design program that handles round, square, or rectangular concentric columns and uses both Johnson and Euler criteria to find critical load, weight and safety****factor. (See Figure – .)****SECANT An eccentric column design program that handles round, square, or rectangular****concentric columns and uses the secant method and Johnson and Euler criteria to find****critical load and safety factor. Plots critical-load curves. (See Figure – .)****Fastener Path: TKSolver Files \ TKSolver General \ Fastener****BLTFATIG Calculates the safety factors for preloaded bolts with fluctuating tensile loads. Determines the necessary tightening torque and plots the load-sharing, safety-factor, and****modified-Goodman diagrams. (See Figure – .) MACHINE DESIGN – An Integrated Approach – Sixth Edition****BOLTSTAT Calculates the safety factors for preloaded bolts with static tensile loads. Determines****necessary tightening torque and plots the load-sharing and safety-factor diagrams.****(See Figure – .)****PWRSCREW Calculates the torque and efficiency of an Acme-thread power screw. (See Figure****– .)****Fatigue Path: TKSolver Files \ TKSolver General \ Fatigue****GDMNPLTR A plotting utility that creates and plots a modified-Goodman diagram for any set of****supplied stresses and strengths. No calculations are done on the data. (See Figure****– .)****GOODMAN Calculates the corrected endurance strength based on supplied data about finish, size,****strength, etc. and draws a modified-Goodman diagram for supplied levels of alternating and mean stresses and material strengths. Also calculates safety factors. (See****Figure – .)****S_NALUM Calculates the corrected endurance strength based on supplied data about finish, size,****strength, etc. and draws an S‑N diagram for supplied levels of alternating and mean****stresses for nonferrous material. Draws both log-log and semilog plots. Based on the****file S_NDIAGM. (See Figure – .)****S_NDIAGM Calculates the corrected endurance strength based on supplied data about finish, size,****strength, etc. and draws an S‑N diagram for supplied levels of alternating and mean****stresses. Draws both log-log and semilog plots. (See Figure – .)****S_NFCTRS Calculates the coefficient and exponent of the S‑N line for a material. (See Figure****– .)****SESAFTIG Calculates and plots the variation on stress with phase in multiaxial fatigue based on****the SESA algorithm. (See Figure – .)****Flywheels Path: TKSolver Files \ TKSolver General \ Flywheel****FWDESIGN Program to find the best combination of flywheel diameters and thickness to balance****its weight against size, stress and safety factor. Calculates the maximum stress, outside diameter, weight, and safety factor as a function of the thickness of a flywheel.****(See Figure – .)****FWRATIO Optimizes flywheel mass versus the ratio of radius to thickness and plots that function. (See Figure – .)****FWSTDIST Program to find the flywheel stress distribution over its radius. Calculates and plots****the stresses across the radius of a flywheel. (See Figure – .)****Fract Mech Path: TKSolver Files \ TKSolver General \ Frctmech****STRSINTS Plots the stress intensity around a crack tip. (See Figure – .)****Gearing Path: TKSolver Files \ TKSolver General \ Gearing****BVLGRDES Program for straight-bevel gearset design. Finds bending and surface stresses in gear****teeth and safety factors using AGMA methods. Requires I and J factors be manually****looked up in AGMA Tables. (See Figure – .)****HELGRDES Program for helical gearset design. Finds bending and surface stresses in gear teeth****and safety factors using AGMA methods. Requires I and J factors be manually****looked up in AGMA Tables. (See Figure – .)****SPRGRDES Calculates bending and surface stresses for a single-spur gearset (with or without an****idler) based on AGMA formulas and determines safety factors for supplied material****strengths. (See Figure – .)****WORMGEAR Worm and wormgear design based on AGMA formulas. (See Figure – .)INDEX OF SOFTWARE ON BOOK’S WEBSITE ****Impact Path: TKSolver Files \ TKSolver General \ Impact****IMPCTHRZ Calculates the impact force on a horizontal rod struck by a mass. (See Figure – .)****IMPCTVRT Calculates the impact force on a vertical rod struck by a mass. (See Figure – .)****Linkages Path: TKSolver Files \ TKSolver General \ Linkages****BARSTAT Calculates the joint forces for a static fourbar linkage subjected to a known force applied to the coupler. (See Figure – .)****BAR_NEW Calculates kinematics of a fourbar linkage.****DYNAFOUR Calculates the kinematics and inverse dynamics of the fourbar linkage. Plots various****linkage parameters like accelerations, forces, and torques. (See Figure – in ref. .)****ENGINE Calculates a slider crank’s kinematics and the gas force and gas torque due to a specified explosion pressure at any position of the crank. It is a static force analysis. (See****Figure – in ref. .)****ENGNBLNC Calculates the dynamic balance condition of an IC engine. Plots shaking forces,****torques, and moments. (See Figure – in ref. .)****FOURBAR Calculates the kinematics and dynamics of a fourbar linkage, position, velocity, and****acceleration, of various points for any range of motion. (See Figure – in ref. .)****SLIDER Calculates the offset slider crank’s kinematics for any one position and input omega****and alpha. Lists can be added for multiple-position analysis. No forces are calculated. (See Figure – in ref. .)****Shafts Path: TKSolver Files \ TKSolver General \ Shafts****HOLTZER Find first natural frequency of a shaft with lumped masses using Holtzer’s method.****(See Figure – .)****SHFTCONC Program to design a simply supported shaft with concentrated load at any point along****its length. Left support must be at x = , but right support can be anywhere. A fluctuating torque may be applied to the shaft. The moment is assumed to be fully reversed.****Calculates and plots the shear, moment, and deflection functions. (See Figure P – .)****SHFTDESN Program to design a simply supported shaft for fatigue in combined bending and****torsion. A fluctuating torque may be applied to the shaft as well as a fluctuating moment. Also calculates stresses in a standard square key for the shaft diameter. (See****Figure P – .)****SHFTUNIF Program to design a simply supported shaft with uniform load over any portion of its****length. Left support must be at x = and right support is at length R x. A fluctuating****torque may be applied to the shaft, and the moment is assumed to be fully reversed.****Calculates and plots the shear, moment, and deflection functions. (See Figure P – .)****STATSHFT Calculates the shear stress in a shaft subjected to a constant torque with no transverse****loads or moments. (See Figure – .)****STEPSHFT Program to design a simply supported stepped shaft with uniform load over any portion. Calculates deflection for stepped shaft. (See Figure – .)****Springs Path: TKSolver Files \ TKSolver General \ Springs****BELLEVIL Calculates the load, deflection, and spring rate for a Belleville spring. Plots the nonlinear force-deflection curves for a family of springs. (See Figure – .)****COMPRESS Designs a helical coil compression spring for fatigue or static loading. Plots curves to****allow an optimization of spring design. (See Figure – .)****EXTENSN Designs a helical coil extension spring for fatigue or static loading. Plots curves to****allow an optimization of spring design. (See Figure – .)****TORSION Designs a helical coil torsion spring for fatigue or static loading. Plots curves to allow an optimization of spring design. (See Figure – .) MACHINE DESIGN – An Integrated Approach – Sixth Edition****Stress Path: TKSolver Files \ TKSolver General \ Stress****COULMOHR Calculates factors for the Coulomb-Mohr diagram for brittle, uneven materials. (See****Figure – .)****ELLIPSE Draws the distortion-energy ellipse for demonstration purposes. (See Figure – .)****MOD_MOHR Modified-Mohr theory calculator for brittle materials. Uses Dowling’s method to****find an effective stress for combined loading in brittle, uneven materials. (See Figure****– .)****STRES_ D Calculates the principal stresses, maximum shear stress, and Von Mises stress for any****two-dimensional applied stress state specified. (See Figure – .)****STRES_ D Calculates the principal stresses and maximum shear stress for any three-dimensional****applied stress state specified. It also plots the stress cubic function. (See Figure – .)****STRSFUNC Two rule functions, one for the calculation of -D principal and one for Von Mises****stresses. Use for merging into other programs that need these functions.****VONMISES Uses the distortion-energy method to find an effective stress for combined loading in****ductile, even materials under static loading. (See Figure – .)****Stress Conc. Path: TKSolver Files \ TKSolver General \ StrsConc****APP_E‑ Calculates stress-concentration factor for a shaft with shoulder fillet in tension. (See****Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a shaft with shoulder fillet in bending. (See****Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a shaft with shoulder fillet in torsion. (See****Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a shaft with a U groove in axial tension.****(See Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a shaft with a U groove in bending. (See****Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a shaft with a U groove in torsion. (See Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a shaft with transverse hole in bending.****(See Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a shaft with transverse hole in torsion. (See****Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a flat bar with shoulder fillet in tension.****(See Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a flat bar with shoulder fillet in bending.****(See Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a flat bar with notch in axial tension. (See****Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a flat bar with notch in bending. (See Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a flat bar with transverse hole in tension.****(See Appendix E, Figure E- .)****APP_E‑ Calculates stress-concentration factor for a flat bar with transverse hole in bending.****(See Appendix E, Figure E- .)INDEX OF SOFTWARE ON BOOK’S WEBSITE ****NTCHSENS Plots the notch-sensitivity curves for steels. (See Figure – part .)****Q_CALC Calculates the notch sensitivity q of a material. (See Figure – part .)****SC_HOLE Calculates and plots stress concentration at an elliptical hole in a semi-infinite plate.****(See Figure – .)****Surface Stress Path: TKSolver Files \ TKSolver General \ SurfStre****ROLLERS Solves for subsurface stresses in cylindrical contact with sliding for the plane strain****case (long cylinders).****SURFCYLX Calculates the surface stresses for Hertzian contact of two cylinders, with or without****a sliding component. Plots subsurface stress distributions across the contact-patch****X-width at surface or at any Z -depth into material. (See Figure – .)****SURFCYLZ Calculates the surface stresses for Hertzian contact of two cylinders with or without a****sliding component. Plots subsurface stress distributions from surface to any Z depth****at any X-width across contact patch. (See Figure – .)****SURFGENL Calculates the surface stresses for Hertzian contact of two bodies of general shape.****(See Figure – .)****SURFSPHR Calculates the surface stresses for Hertzian contact of two spheres, sphere-on-plane or****sphere-in-bowl. Plots subsurface stress distributions. (See Figure – .)****THCK_CYL Calculates the stresses in walls of thick-cylinder pressure vessels. (See Figure – .)****MODEL FILES – MASTERS****Masters Path: TKSolver Files \ TKSolver Masters****FORMATS This file contains only a format sheet that can be added to (merged into) any other****TK file without disturbing its other contents. The format sheet enables formatting of****variables to any desired number of decimal places.****MDUNITS This file is blank except for the format sheet from FORMATS and the units sheet from****UNITMAST. It is intended to be merged into any file to add a units sheet and format****sheet without disturbing the file contents. It is a combination of the files UNITMAST****and FORMATS.****PROWEBSITEURS This file contains a large number of rule, list, and procedure functions that are used****in many of the other TK files provided. These functions can be imported and used in****new models. See the functions’ listings for documentation.****STUDENT This file is blank except for the format sheet from FORMATS and the units sheet from****UNITMAST. It is intended to be used by the student as a starter file for a new model****to which rules, functions, variables, etc., can be added. Starting each model with this****file eliminates the need to merge the UNITMAST or FORMATS files into your models****and provides their advantages with minimal effort. Be sure to save the file with a new****name to avoid overwriting the master file STUDENT each time it is used. Use save****as from the file menu to provide a new filename.****UNITMAST This file contains only a units sheet that can be added to (merged into) any other****model without disturbing its other contents. The units sheet enables units conversion****of variables.****EXECUTABLE FILES (PROGRAMS)****Path: Program Files \ (Programname)****DYNACAM Calculates kinematics and dynamics of cam-follower systems. Data files mentioned****in the text (SPRAY.CAM, CASE A.CAM) are in the folder PROGRAM FILES \****DYNACAM. MACHINE DESIGN – An Integrated Approach – Sixth Edition****LINKAGES Finds position, velocity, acceleration, forces, and torques of any fourbar, fivebar,****sixbar, or slider linkage. Calculates kinematics and dynamics of any single- or multicylinder internal-combustion engine (or compressor) of inline, vee, opposed, or W****configuration.****MATRIX Solves any linear system of up to equations in unknowns. Files CASE A.MTR,****CASE A.MTR, CASE A.MTR, and CASE A.MTR are also included in the folder****PROGRAM FILES \ MATRIX.****MOHR Computes the cubic stress function and plots the Mohr’s circles for any -D or -D****stress state. Files EX – .MOH, EX – .MOH, and EX – .MOH are also****included in the folder PROGRAM FILES \ MOHR.****CAD MODEL FILES****Path: CAD Model Files \ Problem Files \ Figure_No****These files provide Solidworks CAD models of figures for various problems.****If the Solidworks program is not available, a free viewer for these files, eDrawings, can be****downloaded from: http://www.edrawingsviewer.com****Fig_P ‑ For Problem – ****FIG_P ‑ For Problems – , – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – and – ****FIG_P ‑ For Problems – and – ****FIG_P ‑ For Problems – and – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – , – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – to – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – and – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – and – ****FIG_P ‑ B For Problem – ****FIG_P ‑ C For Problem – ****FIG_P ‑ D For Problem – ****FIG_P ‑ E For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – , – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – to – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – and – ****FIG_P ‑ B For Problem – ****FIG_P ‑ C For Problem – ****FIG_P ‑ D For Problem – ****FIG_P ‑ E For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – to – INDEX OF SOFTWARE ON BOOK’S WEBSITE ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – , – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – , and – ****FIG_P ‑ For Problems – , – , and – ****FIG_P ‑ For Problems – , and – ****FIG_P ‑ For Problems – and – ****FIG_P ‑ For Problem – ****FIG_P ‑ For Problems – to – ****FIG_P ‑ For Problems – to – ****FEA MODEL FILES****Path: FEA Model Files \ Case Study Models \ Case_No****These files provide Solidworks CAD and FEA models of various Case Studies.****CASE STUDY Bicycle Brake Lever****CASE STUDY Crimping Tool****CASE STUDY Bicycle Brake Arm****CASE STUDY Trailer Hitch****DERIVATIONS OF EQUATIONS****Path: Derivations****Fourbar Acceleration Derivation.pdf****Fourbar Position Derivation.pdf****Fourbar Velocity Derivation.pdf****Slider Acceleration Derivation.pdf****Slider Velocity Derivation.pdf****REFERENCES ****END**

**كلمة سر فك الضغط : books-world.netThe Unzip Password : books-world.net**

### تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول

many thanks

لا شكر على واجبلاتنسى المساهمة معنا بعمل اللايك والشير للمنشورات

والإشتراك فى القناة

https://www.youtube.com/channel/UCUzuTx6VgyCmKYpe0DYRT-Q

وزيارة الموقع

“https://www.books-world.net”

والاشتراك في صفحة عالم الكتب على الفيس بوك

https://www.facebook.com/booksworld.net

والجروب على الفيس بوك

https://www.facebook.com/groups/2246894752230285/

https://www.facebook.com/groups/DEABS2010/

و جروب المنتدى على الواتساب

https://chat.whatsapp.com/F7y6ThYOR2gEkSK7KtnhKx

https://chat.whatsapp.com/Dv2QvTOLGp47OaVi5UB2sT

https://chat.whatsapp.com/IC43ZxT5MzWI9ysZLMWlbx

نرجو الانضمام لجروب واحد فقط من جروبات الواتساب

و قناتنا على التيليجرام

https://t.me/Eng2010Com

https://t.me/Eng2010