Intelligent Nanomaterials
اسم المؤلف
Ashutosh Tiwari, Yogendra Kumar Mishra, Hisatoshi Kobayashi and Anthony P. F. Turner
التاريخ
المشاهدات
300
التقييم
Loading...
التحميل

Intelligent Nanomaterials
Second Edition
من سلسلة علم المواد المتقدمة
Advanced Material Series
Edited by
Ashutosh Tiwari, Yogendra Kumar Mishra, Hisatoshi Kobayashi and Anthony P. F. Turner
Contents
Preface xvii
Part 1 Nanomaterials, Fabrication and Biomedical
Applications
1 Electrospinning Materials for Skin Tissue Engineering 3
Beste Kinikoglu
1.1 Skin Tissue Engineering Sca?olds 4
1.1.1 Materials Used in Skin Tissue
Engineering Sca?olds 5
1.1.1.1 Natural Sca?olds 6
1.1.1.2 Synthetic Sca?olds 7
1.1.2 Sca?old Production Techniques Used in
Skin Tissue Engineering 9
1.1.2.1 Freeze-drying 9
1.1.2.2 Electrospinning 11
1.2 Conclusions 14
References 15
2 Electrospinning: A Versatile Technique to Synthesize Drug
Delivery Systems 21
Xueping Zhang, Dong Liu and Tianyan You
2.1 Introduction 21
2.2 Te Types of Delivered Drugs 22
2.2.1 Antitumor/Anticancer Drugs 22
2.2.2 Antibiotic 24
2.2.3 Growth Factors 26
2.2.4 Nucleic Acids 27
2.2.5 Proteins 28vi Contents
2.3 Polymers Used in Electrospinning 29
2.3.1 Natural Polymers 30
2.3.1.1 Chitosan 30
2.3.1.2 Silk Fibroin 30
2.3.1.3 Cellulose Acetate 32
2.3.2 Synthetic Polymers 32
2.3.2.1 Synthetic Homopolymers 32
2.3.2.2 Synthetic Copolymers 33
2.3.3 Polymer Blends 34
2.3.3.1 Blends of Natural Polymers 34
2.3.3.2 Blends of Natural and Synthetic Polymers 35
2.3.3.3 Blends of Synthetic Polymers 36
2.3.3.4 Other Multicomponent Polymer Mixtures 36
2.4 Te Development of Electrospinning Process for
Drug Delivery 36
2.4.1 Coaxial Electrospinning 37
2.4.2 Emulsion Electrospinning 38
2.4.3 Multilayer Electrospinning 39
2.4.4 Magnetic Nanofber 40
2.4.5 Post-modifcation of Electrospun Sca?olds 41
2.5 Conclusions 41
Acknowledgment 42
References 42
3 Electrospray Jet Emission: An Alternative
Interpretation Invoking Dielectrophoretic Forces 51
Francesco Aliotta, Oleg Gerasymov and Pietro Calandra
3.1 Introduction 52
3.2 Electrospray: How It Works? 54
3.3 Historical Background 63
3.4 How the Current (and Wrong) Description of the
Electrospray Process Has Been Generated? 65
3.5 What Is Wrong in the Current Description? 68
3.6 Some Results Shedding More Light 70
3.7 Discriminating between Electrophoretic and
Dielectrophoretic Forces 72
3.8 Some Teoretical Aspects of Dielectrophoresis 76
3.9 Conclusions 83
References 86Contents vii
4 Advanced Silver and Oxide Hybrids of Catalysts During
Formaldehyde Production 91
Anita Kova? Kralj
4.1 Introduction 92
4.2 Te Catalysis 93
4.2.1 Limited Hybrid Catalyst Methodology 94
4.3 Case Study 95
4.3.1 Silver Process 95
4.3.2 Oxide Process 96
4.4 Limited Hybrid Catalyst Method for
Formaldehyde Production 97
4.4.1 Analyzing the Pure Catalyst Process 97
4.4.2 Graphical Presentation of Catalyst Process 97
4.4.3 Advanced Hybrid Catalyst Process 98
4.4.4 Choosing the Best Advanced Hybrid
Catalyst Process 101
4.4.5 Simulation of the Best Advanced Hybrid
Catalyst Process 102
4.5 Conclusion 104
4.6 Nomenclatures 105
References 105
5 Physico-chemical Characterization and Basic Research
Principles of Advanced Drug Delivery Nanosystems 107
Natassa Pippa, Stergios Pispas and Costas Demetzos
5.1 Introduction 108
5.2 Basic Research Principles and Techniques for the
Physicochemical Characterization of Advanced
Drug Delivery Nanosystems 108
5.2.1 Microscopy 108
5.2.1.1 Optical Microscopy 108
5.2.1.2 Electron Microscopy 109
5.2.1.3 Scanning Probe Microscopy 109
5.2.2 Termal Analysis 111
5.2.2.1 Classifcation of Thermal Analysis
Techniques 111
5.2.2.2 Di?erential Scanning Calorimetry 113viii Contents
5.2.3 Measurements of Size Distribution and
?-Potential of Nanocolloidal Dispersion
Systems and Teir Evaluation 117
5.2.3.1 Photon Correlation Spectroscopy (PCS)
and Other Light-scattering Techniques 118
5.3 Conclusions 122
References 122
6 Nanoporous Alumina as an Intelligent Nanomaterial for
Biomedical Applications 127
Moom Sinn Aw and Dusan Losic
6.1 Introduction 127
6.2 Nanoporous Anodized Alumina as a
Drug Nano-carrier 129
6.2.1 Intelligent Properties of NAA
for Drug Delivery 129
6.3 Biocompatibility of NAA and NNAA Materials 138
6.4 NAA for Diabetic and Pancreatic Applications 143
6.5 NAA Applications in Orthopedics 144
6.6 NAA Applications for Heart, Coronary, and
Vasculature Treatment 148
6.7 NAA in Dentistry 150
6.8 Conclusions and Future Prospects 152
Acknowledgment 153
References 154
7 Nanomaterials: Structural Peculiarities, Biological E?ects,
and Some Aspects of Application 161
N.F. Starodub, M.V. Taran, A.M. Katsev,
C. Bisio and M. Guidotti
7.1 Introduction 162
7.2 Physicochemical Properties Determining the
Bioavailability and Toxicity of Nanoparticles 164
7.3 Current Nanoecotoxicological Knowledge 168
7.3.1 Main Causes of NPs Toxicity 169
7.3.2 Risk Assessment for NPs in the Environment 170
7.3.3 Peculitiaries of E?ects of Some NPs
on the Living Objects 171
7.3.3.1 Experiments with Luminescent Bacteria 171
7.3.3.2 Daphnias as Indicators of In?uence of
Nanostructured Material 174Contents ix
7.3.3.3 Investigations with Model Plants 174
7.3.3.4 Experiments with Plants under
Real Conditions 176
7.3.3.5 E?ect of NPs of Some Oxide Metals
on the Bioluminescent Bacteria 177
7.3.3.6 Reaction of Daphnias on the
E?ect of Some NPs 180
7.3.3.7 E?ect of the Nanostructured Solids
on the Physiological Characteristics
of the Common Bean
(Phaseolus vulgaris) 181
7.3.3.8 E?ect of the Colloidal NPs on the
Plants at Grow under Carbonate
Chlorosis Conditions 182
7.4 Modern Direction of the Application of
Nanostructured Solids in Detoxication Processes 186
7.4.1 From Conventional Decontamination
to Innovative Nanostructured Systems 186
7.5 Conclusions 188
Acknowledgments 189
References 189
8 Biomedical Applications of Intelligent Nanomaterials 199
M. D. Fahmy, H. E. Jazayeri, M. Razavi, M. Hashemi,
M. Omidi, M. Farahani, E. Salahinejad, A. Yadegari,
S. Pitcher and Lobat Tayebi
8.1 Introduction 200
8.2 Polymeric Nanoparticles 202
8.2.1 General Features 202
8.2.2 Poly-d,l-lactide-co-glycolide 203
8.2.3 Polylactic Acid 203
8.2.4 Polycaprolactone (PCL) 204
8.2.5 Chitosan 204
8.2.6 Gelatin 204
8.2.7 Potential and Challenges 205
8.3 Lipid-based Nanoparticles 206
8.3.1 Di?erent Types 206
8.3.2 Applications 207
8.3.2.1 Intrinsic Stimuli 207
8.3.2.2 Extrinsic Stimuli 208
8.3.3 Potential and Challenges 211x Contents
8.4 Carbon Nanostructures 213
8.4.1 General Feature 213
8.4.2 Zero-dimensional Carbon Nanostructures 213
8.4.3 One-dimensional Carbon Nanostructures 215
8.4.4 Two-dimensional Carbon Nanostructures 216
8.4.5 Tree-dimensional Carbon Nanostructures 217
8.4.6 Potential and Challenges 218
8.5 Nanostructured Metals 219
8.5.1 Nitinol 219
8.5.2 Other Metallic Nanoparticles 220
8.5.3 Potential and Challenges 221
8.6 Hybrid Nanostructures 223
8.6.1 Smart Nanostructured Platforms for
Drug Delivery 224
8.6.1.1 Metal-based Smart Composite
and Hybrid Nanostructures 224
8.6.1.2 Carbon-based Smart Composite
and Hybrid Nanostructures 225
8.6.2 Smart Nanostructures for Diagnostic Imaging 226
8.6.2.1 Metal-based Smart Composite and
Hybrid Nanostructures 227
8.6.2.2 Carbon-based Smart Composite
and Hybrid Nanostructures 227
8.7 Concluding Remarks 228
References 229
Part 2 Nanomaterials for Energy, Electronics, and
Biosensing
9 Phase Change Materials as Smart Nanomaterials
for Termal Energy Storage in Buildings 249
M. Kheradmand, M. Abdollahzadeh, M. Azenha
and J.L.B. de Aguiar
9.1 Introduction 250
9.2 Phase Change Materials: Defnition, Principle of
Operation, and Classifcations 252
9.3 PCM-enhanced Cement-based Materials 254
9.4 Hybrid PCM for Termal Storage 255Contents xi
9.5 Numerical Simulations 267
9.5.1 Numerical Simulation of Heat Transfers
in the Context of Building Physics 267
9.5.2 Governing Equations 268
9.6 Termal Modeling of Phase Change 269
9.6.1 Te Enthalpy-porosity Method 269
9.6.2 Te E?ective Heat Capacity Method 270
9.6.3 Numerical Simulation of
Small-scale Prototype 271
9.6.4 Results of the Numerical Simulations
of Prototype 272
9.6.5 Case Study of a Simulated Building 273
9.6.6 Results of Termal Behavior and Energy Saving 276
9.6.7 Global Performance of a Building Systems with
Hybrid PCM 277
9.7 Nanoparticle-enhanced Phase Change Material 280
9.7.1 Modeling nanoparticle-enhanced PCM 282
9.7.2 Defnition of the Case study 283
9.7.3 Results of Case Study with Nanoparticleenhanced Phase Change Material 284
9.8 Conclusions (General Remarks) 288
References 289
10 Nano?uids with Enhanced Heat Transfer Properties
for Termal Energy Storage 295
Manila Chieruzzi, Adio Miliozzi, Luigi Torre and
José Maria Kenny
10.1 Introduction 296
10.2 Termal Energy Storage 298
10.2.1 Sensible Heat Termal Storage 301
10.2.2 Latent Heat Termal Storage 303
10.2.3 Termochemical Storage 309
10.2.4 Final Remarks 313
10.3 Nano?uids for Termal Energy Storage 313
10.3.1 Base Fluid 316
10.3.2 Nanoparticles 318
10.3.3 Methods of Nano?uid Preparation 327
10.4 Nano?uids Based on Molten Salts: Enhancement
of Termal Properties 330
10.4.1 Specifc Heat 331
10.4.2 Latent Heat of Fusion and
Melting Temperature 340xii Contents
10.4.3 Termal Conductivity 344
10.4.4 Termal Storage 347
10.5 Conclusions 349
References 351
11 Resistive Switching of Vertically Aligned Carbon
Nanotubes for Advanced Nanoelectronic Devices 361
O.A. Ageev, Yu. F. Blinov, M.V. Il’ina, B.G. Konoplev
and V.A. Smirnov
11.1 Introduction 362
11.2 Teoretical Description of Resistive Switching
Mechanism of Structures Based on VACNT 363
11.2.1 Te Modeling of the Deformation of the
VACNT A?ected by a Local External
Electric Field 364
11.2.2 Te Modeling of the Processes of Polarization
and Piezoelectric Charge Accumulation in a
Vertically Aligned Carbon Nanotube 370
11.2.3 Te Modeling of the Memristor E?ect
in the Structure Based on a Vertically
Aligned Carbon Nanotube 374
11.3 Techniques for Measuring the Electrical Resistivity
and Young’s Modulus of VACNT Based on Scanning
Probe Microscopy 377
11.3.1 Techniques for Measuring Young’s Modulus
of VACNT Based on Nanoindentation 378
11.3.2 Techniques for Measuring the Electrical
Resistivity of VACNT Based on Scanning
Tunnel Microscopy 382
11.4 Experimental Studies of Resistive Switching in
Structures Based on VACNT Using Scanning
Tunnel Microscopy 384
References 391
12 Multi-objective Design of Nanoscale Double Gate MOSFET
Devices Using Surrogate Modeling and Global Optimization 395
Toufk Bentrcia, Fayçal Dje?al and Elasaad Chebaki
12.1 Introduction 396
12.2 Downscaling Parasitic E?ects 400Contents xiii
12.2.1 Short Channel E?ect 401
12.2.1.1 Drain-induced Barrier Lowering 401
12.2.1.2 Channel Length Modulation 401
12.2.1.3 Carrier Mobility Reduction 402
12.2.2 Quantum Mechanical Confnement E?ect 402
12.2.2.1 Inversion Charge Displacement 403
12.2.2.2 Poly-silicon Gate Depletion 403
12.2.2.3 Treshold Voltage Shif 403
12.2.3 Hot-carrier E?ect 404
12.2.3.1 Impact-ionization 404
12.2.3.2 Carrier Injection 405
12.2.3.3 Interface Trap Formation 405
12.3 Modeling Framework 405
12.3.1 Design of Computer Experiments 406
12.3.2 Metamodel Development 408
12.3.3 Multi-objective Optimization 410
12.4 Simulation and Results 412
12.5 Concluding Remarks 422
References 422
13 Graphene-based Electrochemical Biosensors:
New Trends and Applications 427
Georgia-Paraskevi Nikoleli, Stephanos Karapetis,
Spyridoula Bratakou, Dimitrios P. Nikolelis,
Nikolaos Tzamtzis and Vasillios N. Psychoyios
13.1 Introduction 428
13.2 Scope of Tis Review 429
13.3 Graphene and Sensors 430
13.4 Graphene Nanomaterials Used in Electrochemical
(Bio)sensors Fabrication 430
13.5 Graphene-based Enzymatic Electrodes 432
13.5.1 Graphene-based Electrochemical Enzymatic
Biosensors for Glucose Detection 432
13.5.2 Graphene-based Electrochemical Enzymatic
Biosensors for Hydrogen Peroxide Detection 434
13.5.3 Graphene-based Electrochemical Enzymatic
Biosensors for NADH Detection 435
13.5.4 Graphene-based Electrochemical Enzymatic
Biosensors for Cholesterol Detection 435
13.5.5 Graphene-based Electrochemical Enzymatic
Biosensors for Urea Detection 43713.6 Graphene-based Electrochemical DNA Sensors 437
13.7 Graphene-based Electrochemical Immunosensors 439
13.7.1 Graphene-based Electrochemical
Immunosensors for Biomarker Detection 440
13.7.2 Graphene-based Electrochemical
Immunosensors for Pathogen Detection 441
13.8 Commercial Activities in the Field of
Graphene Sensors 442
13.9 Recent Developments in the Field of
Graphene Sensors 442
13.10 Conclusions and Future Prospects 443
Acknowledgments 445
References 445
Part 3 Smart Nanocomposites, Fabrication, and
Applications
14 Carbon Fibers-based Silica Aerogel Nanocomposites 451
Agnieszka ?losarczyk
14.1 Introduction to Nanotechnology 451
14.2 Chemistry of Sol–gel Process 454
14.2.1 Characterization and Application
of Silica Aerogels 454
14.2.2 Synthesis of Silica Gels via Sol–gel Process 456
14.2.3 Aging of Silica Gels 459
14.2.4 Methods of Drying of Silica Gels 460
14.3 Types of Silica Aerogel Nanocomposites 462
14.3.1 Reinforcing the Silica Aerogel and
Xerogel Structure in the Synthesis Stage 462
14.3.2 Metal- and Metal Oxide-based Silica Aerogels 464
14.3.3 Polymer-based Silica Aerogels 466
14.3.4 Fiber-based Silica Aerogels 468
14.4 Carbon Fiber-based Silica Aerogel Nanocomposites 476
14.4.1 Characterization of Carbon Fibers and
Chemical Modifcation of Teir Surface 478
14.4.2 Synthesis of Silica Aerogel: Carbon Fiber
Nanocomposites in Relation to the
Type of Precursor 481
14.4.3 Drying of Silica Gel: Carbon Fiber
Nanocomposites 482
xiv Contents14.4.4 Research Methods Applied 484
14.4.5 Physical and Chemical Characterization of
Silica Aerogel and Xerogel Nanocomposites 485
14.5 Conclusions 493
References 494
15 Hydrogel–Carbon Nanotubes Composites for
Protection of Egg Yolk Antibodies 501
Bellingeri Romina, Alustiza Fabrisio, Picco Natalia,
Motta Carlos, Grosso Maria C, Barbero Cesar,
Acevedo Diego and Vivas Adriana
15.1 Introduction 502
15.2 Polymeric Hydrogels 504
15.2.1 Synthetic and Natural Hydrogels 504
15.2.2 Intelligent Hydrogels 505
15.2.3 Characterization of Hydrogels 506
15.3 Carbon Nanotubes 507
15.3.1 Dispersion of Carbon Nanotubes 508
15.3.2 Toxicity of Carbon Nanotubes 509
15.3.3 Noncovalent Functionalization Strategies 509
15.3.4 Covalent Functionalization Strategies 510
15.4 Polymer–CNT Composites 511
15.4.1 Drug Delivery 512
15.4.2 Tissue Engineering 513
15.4.3 Electrical Cell Stimulation 514
15.4.4 Antimicrobial Materials 515
15.5 Egg Yolk Antibodies Protection 515
15.6 In Vitro Evaluation of Nanocomposite Performance 517
15.7 In Vivo Evaluation of Nanocomposite Performance 518
15.7.1 Nanotechnology for Bovine
Production Applications 519
15.7.2 Nanotechnology for Porcine
Production Applications 519
15.7.3 Nanotechnology Applications in Other
Animal Species 520
15.8 Concluding Remarks and Future Trends 521
References 522
Contents xvxvi Contents
16 Green Fabrication of Metal Nanoparticles 533
Anamika Mubayi, Sanjukta Chatterji and Geeta Watal
16.1 Introduction 533
16.2 Development of Herbal Medicines 535
16.3 Green Synthesis of Nanoparticles 536
16.4 Characterization of Phytofabricated Nanoparticles 539
16.5 Impact of Plant-mediated Nanoparticles on
Terapeutic Efcacy of Medicinal Plants 540
16.5.1 Antidiabetic Potential 543
16.5.2 Antioxidant Potential 545
16.5.3 Antimicrobial Potential 548
16.6 Conclusions 550
References 551
Index 555
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل

تسجيل | تسجيل الدخول