Fundamentals of Semiconductor Physics and Devices

Fundamentals of Semiconductor Physics and Devices
اسم المؤلف
Rolf Enderlein, NommJ.M.Horing
التاريخ
16 أبريل 2018
المشاهدات
348
التقييم
Loading...

Fundamentals of Semiconductor Physics and Devices
Rolf Enderlein
NommJ.M.Horing
ihmboldt-bhiuemity BerEin
University of Sao Paulo
stewwas Institute of Technology
Hoboken, NJ
Contents
1 Characterization of serniconductors 1
1.1 Inlrnduclion 1
1.2 Atomic structure of ideal crystals 5
1.2.1 Cryst.al latlices 6
1.2.2 Point groups of equivalent directions arid crystal classes 12
1.2.3 Space groups and crystal structures 14
1.2.4 Cubic semiconductor structures . 16
1.2.5 Hexagoiial semiconductor st.ructures 22
1.3 Chemical nature of semiconductors. Material classes . 28
1.3.1 Group IV elemental semiconductors 29
1.3.2 111-V semiconductors . 30
1.3.3 11-VI semiconductors . 31
1.3.4 Group \’I elemental semiconductors 31
1.3.5 IV-VI semiconductors 32
1.3.6 Other compound semiconductors 32
1.4 hlacroscopic properties and their microscopic implications 33
1.4.1 Electrical conductivity 34
1.4.2 Depenclenre of conductivity on the semiconductor state 35
1.4.3 Optical absorption spectrum and the band modcl of
srmicoiiductors 38
1.4.4 Electrical conductivity in the band model . 43
1.4.5 The Hall effect and the existence of positively charged
freely mobile carriers . 45
1.4.6 Seinicondiictors far from thermodynamic equilibrium . 49
2 Electronic structure of ideal crystals 51
2.1 Abcimic cores and vdcnce electrons . 51
2.2 The ciynaniical problem . 54
lence dwtl-on system . 54
2.2.1 Schriidiiiger equation for the interacting core and va-
2.2.2 Adiabatic approximation. Lattice dynamics 57
2.2.3 Oneparticle approximation. Oneparticle Schriidinger equation 66
General properties of stationary one-rlectron states in a crystal 82
2,3.1 Syinrnctry properties of the one-electron Schrtidinger
2.3.2 Rbch theorem 85
2.3.3 Reciprocal v e c h space and the reciprocal latt.ice . 89
2.3.4 Relation between energy eigenvalues and quasi-wave vector . 94
equation 82xii Contents
2.4 Schrodinger equation solution in the nearly-freeelectron approximation 98
2.4.1 Kon-degenerate perturbat.ion t.heory 100
2.4.2 Degenerate perturbation theory . 103
2.5 Bandstructure 105
2.5.1 Brillouin zones 105
2.5.2 Degeneracy of energy bands . 116
2.5.3 Critical points and effective masses . 119
2.5.4 Density of states . 123
2.5.5 Spin 128
2.5.6 Calculational methods for band structure determination133
2.6 Tight binding approximation 140
2.6.1 Fundamentals . 140
2.6.2 TB theory- of diamond and zincblende type semiconductors 148
2.6.3 sp3-hybrids, total energy and chemical bonding 165
2.7 k . p-met.hod . 179
2.7.1 Fundamentals . 179
2.7.2 Valence bands of diamond structure semiconductors
without spin-orbit interaction 184
2.7.3 httingeT-Kohn model 189
2.7.4 Kana model 200
Band structure of important semiconductors 211
2.8.1 Silicou . 212
2.8.2 Germanium 218
2.8.3 111-V semiconductors 219
2.8.4 IGVI semiconductors . 221
2.8.5 IV-\’I semiconductors 224
2.8.6 Tellurium and selenium .224
3 Electronic structure of semiconductor crystals with perturbations 225
3.1 Atomic structure of red semiconductor crystals 226
3.1.1 Classification of perturbations 226
3.1.2 Point perturbations 227
3.1.3 Formation of point perturbations and their movenient 235
3.1.4 h e and planar defects . 240
3.2 One-electron Schrodinger equation for point perturbations 241
3.2.1 Electron-core interaction .242
3.2.2 Electron-elw?c.lroninteraction 245
3.3 Effective mass equation . 252
3.3.1 Effectivemass equation for a single band . 253
3.3.2 Multjband effective mass equation . 259Contents X l l l …
3.4 Shallow levels. Donor and acceptor states . 265
3.4.1 Hydrogen model . 266
3.4.2 Improvements upon the hydrogen model 272
3.5 Deeplevds 281
3.5.1 General characterization of deep levels . 281
3.5.2 Defect molecule model 285
3.5.3 Solution methods for the oneelectron Schriidinger q u a –
tion of a crystal with a point perturbation . 293
3.5.4 Correlation effects 301
3.5.5 Resu1t.s for se1ecDed deep centtas 308
3.6 Clean semiconductor surfaces 334
3.6.1 The concept of clean surfaces 334
3.6.2 Atomic structure of clean surlaces . 336
3.6.3 Electronic structure of crystals with a surface . 354
3.6.4 htomic and electronic structure of particular surfaces 371
3.7 Semiconductor microstructures .388
3.7.1 Neterojunctions 388
3.7.2 Microstructures; Fabrication, classifications, examples 396
3.7.3 h*lethodsfor electronic structure calculations . 409
3.7.4 Elcctronic structure of particular microstructures . 420
3.8 Macroscopic electric fields 433
3.8.1 Effective mass equation and stationary electron states 434
3.8.2 Non-stationary states. Bloch oscillations 437
3.8.3 Interband tunneling . 440
3.8.4 Photon assisted interband tunneling 442
3.9.1 Effective mass equation in a magnetic field 444
3.9.2 Solution of the effective mass equation . 452
3.9 Macroscopic magnetic fields . 443
4 Electron system in therrnodynamic equilibrium 457
4.1 Fundamentals of the statistical description . 457
4.2 Calculation of average particle numbers 460
4.2.1 Configuration-independent oneparticle states . 460
4.2.2 Configuration-dependent one-particle states 462
4.3 Density of states . 469
4.3.1 Total electron concentration . 469
4.3.2 Density of states of ideal semiconductors 470
4.3.3 Density of states of real semiconductors 474
4.4 Free carrier concentrations 477
4.4.1 Conservation of total electron number . 477
4.4.2 Free carrier concentration dependence on Fermi energy. Law of mass action . 478
4.4.3 Intrinsic semiconductors . 482xiv Contents
4.4.4 Extrinsic semiconductors 484
4.4.6 More complex cases . 492
4.4.5 Compensation of donors and acceptors . 489
5 Non-equilibrium processes in semiconductors 499
5.1 Fundamentals of the statistical description of non-equilibrium
processes . 500
5.2 Systematics of non-equilibrium processes in semiconductors . 505
5.2.1 Temporal inhomogeneity and spatial homogeneity 505
5.2.2 Spatial inhomogeneity and temporal homogeneity . 506
5.2.3 Space and time inhomogeneities 508
5.3 Generation and annihilation of free charge carriers 509
5.3.1 Generation processes . 510
5.3.2 Unipolar annihilation of free charge carriers: capture
at deep centers 511
5.3.3 Bipolar annihilation of carriers at deep centers 517
5.4 Drift current . 523
5.5 Diffusion and annihilation of free carriers . 527
5.6 Equilibrium of free carriers in inhomogeneously doped semiconductors . 530
6 Semiconductor junctions in thermodynamic equilibrium 535
6.1 pn-junction 537
6.1.1 Establishment of thermodynamic equilibrium . 539
6.1.2 Diffusion voltage . 541
6.1.3 Spatial variation of the electric and chemical potentials: Schottky approximation 542
6.2 Heterojunctions 549
6.2.1 Equilibrium condition 550
6.2.2 Electrostatic potentid. GaAs/Gal-,Al, As heterojunction as an example 552
6.3 Metal-semiconductor junctions . 557
6.3.1 Energy level diagram before establishing equilibrium . 357
6.3.2 Electrostatic potential 559
6.3.3 Schottky barrier . 563
6.4 Insulator-semiconductor junctions 567
6.4.1 Thermodynamic equilibrium 567
6.4.2 Influence of interface states . 570
6.4.3 Semiconductor surfaces . 572
7 Semiconductor junctions under non-equilibrium conditions 573
7.1.1 Electrostatic potential profile 576
7.1 pn-junction in an external voltage . 574Contents xv
7.1.2 Mechamism of current transport through a pn-junction 577
7.1.3 Chemical potential profiles for electrons and holm 580
7.1.4 Dependence of current density on voltage . 583
7.1.5 Bipolar transistor’ . 585
7.1.6 Tune1 diode . 593
7.2 yn-junction in interaction with light 595
7.2.1 Photocffect at a pn-junction. Photodiode and photovoltaic element 595
7.2.2 Laser diode 599
7.3 Metal-semiconductor junction in an external voltage.
Rectificrs . 606
7.4 hwulator-semiconductor junction in an external voltage . 612
7.4.1 Field effect 612
7.4.2 Inversion layers 614
7.4.3 MOSFET . 620
Appendices
A Group theory for applications in semiconductor physics 623
A.1 Definitions and concepts . 623
A . l .1 Group definition . 623
A.1.2 Concepts . 624
A.2 Rigid displacements . 627
A.2.1 Definition . 621
A.2.2 Translations 628
A.2.3 Orthogonal transformations . 629
A.2.4 Geometrical interpretation 631
-4.2.5 Screw rotations and glide re3ections 632
A.3 Translation. point and space groups 635
A.3.1 Lattice translation groups 635
-4.3.2 Point groups . 636
A.3.3 Space groups . 654
A.4 Representations of groups 655
A.4.1 Introduction . 655
A.4.2 Irreducible representations 661
4.4.3 Products of representations . 667
A.5 Representations of the full rotation group . 673
4.5.1 Vector representation of the rotation group and generators of infinitesimal rotations 674
A.5.2 Representations for dimensions other than three . 676
A.6 Spinor representations 682
A.6.1 Space-dependent spinors . 682m i Cootents
A.6.2 Representation V I 683
A.6.3 Irreducible spinor representations 684
A.6.4 Double group method 685
A.7 Projective representations 687
A.7.1 Factor systems 687
A.7.2 Definitions and theorems 689
A.7.3 Construction of projective representations . 692
A.8 Time reversal symmetry . 692
A.8.1 Time reversal operator 693
A.8.2 Additional degenerac!?~of energy eigenvalues . 694
A.8.3 Additional selection rules for matrix elements . 697
A.9 Irreducible representations of space groups . 698
A.9.1 Representations of translation groups . 698
A.9.2 Star of wavevectors 700
A.9.3 Small point groups and their projective representations 702
A.9.4 Representations of the fufl space group . 704
A.9.5 Spinor representations of space groups . 706
A.9.6 Implications of time reversal symmetry 707
A.9.7 Compatibility . 712
A.10 Irreducible representations of small point groups . 712
A.10.1 Character tables . 712
A.10.2 Multiplication tables 731
A.10.3 Compatibility relations . 734
B Corrections to the adiabatic approximation 737
C Occupation number representation ‘741
Bibliography 747
Index
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً