Fluid Mechanics for Engineers

Fluid Mechanics for Engineers
اسم المؤلف
David a. Chin
التاريخ
21 يوليو 2019
المشاهدات
التقييم
(لا توجد تقييمات)
Loading...

Fluid Mechanics for Engineers
In Si Units
David a. Chin
University of Miami
Contents
Preface 11
Chapter 1 Properties of Fluids 17
1.1 Introduction 17
1.1.1 Nomenclature 19
1.1.2 Dimensions and Units 20
1.1.3 Basic Concepts of Fluid Flow 26
1.2 Density 27
1.3 Compressibility 32
1.4 Ideal Gases 36
1.4.1 Equation of State 36
1.4.2 Mixtures of Ideal Gases 37
1.4.3 Thermodynamic Properties 39
1.4.4 Speed of Sound in an Ideal Gas 44
1.5 Standard Atmosphere 44
1.6 Viscosity 46
1.6.1 Newtonian Fluids 46
1.6.2 Non-Newtonian Fluids 53
1.7 Surface Tension 55
1.8 Vapor Pressure 61
1.8.1 Evaporation, Transpiration, and Relative Humidity 63
1.8.2 Cavitation and Boiling 64
1.9 Thermodynamic Properties of Liquids 67
1.9.1 Specific Heat 67
1.9.2 Latent Heat 68
1.10 Summary of Properties of Water and Air 69
Key Equations in Properties of Fluids 70
Problems 72
Chapter 2 Fluid Statics 87
2.1 Introduction 87
2.2 Pressure Distribution in Static Fluids 88
2.2.1 Characteristics of Pressure 88
2.2.2 Spatial Variation in Pressure 89
2.2.3 Practical Applications 92
2.3 Pressure Measurements 101
2.3.1 Barometer 101
2.3.2 Bourdon Gauge 103
2.3.3 Pressure Transducer 104
2.3.4 Manometer 105
2.4 Forces on Plane Surfaces 110
2.5 Forces on Curved Surfaces 120Contents 5
2.6 Buoyancy 127
2.6.1 Fully Submerged Bodies 127
2.6.2 Partially Submerged Bodies 132
2.6.3 Buoyancy Effects Within Fluids 138
2.7 Rigid-Body Motion of Fluids 139
2.7.1 Liquid with Constant Acceleration 141
2.7.2 Liquid in a Rotating Container 145
Key Equations in Fluid Statics 148
Problems 150
Chapter 3 Kinematics and Streamline Dynamics 177
3.1 Introduction 177
3.2 Kinematics 178
3.2.1 Tracking the Movement of Fluid Particles 181
3.2.2 The Material Derivative 188
3.2.3 Flow Rates 190
3.3 Dynamics of Flow along a Streamline 192
3.4 Applications of the Bernoulli Equation 202
3.4.1 Flow through Orifices 203
3.4.2 Flow Measurement 209
3.4.3 Trajectory of a Liquid Jet 214
3.4.4 Compressibility Effects 216
3.4.5 Viscous Effects 218
3.4.6 Branching Conduits 220
3.5 Curved Flows and Vortices 222
3.5.1 Forced Vortices 223
3.5.2 Free Vortices 226
Key Equations in Kinematics and Streamline Dynamics 229
Problems 232
Chapter 4 Finite Control Volume Analysis 256
4.1 Introduction 256
4.2 Reynolds Transport Theorem 257
4.3 Conservation of Mass 259
4.3.1 Closed Conduits 263
4.3.2 Free Discharges from Reservoirs 265
4.3.3 Moving Control Volumes 267
4.4 Conservation of Linear Momentum 268
4.4.1 General Momentum Equations 269
4.4.2 Forces on Pressure Conduits 273
4.4.3 Forces on Deflectors and Blades 281
4.4.4 Forces on Moving Control Volumes 282
4.4.5 Wind Turbines 288
4.4.6 Reaction of a Jet 293
4.4.7 Jet Engines and Rockets 296
4.5 Angular Momentum Principle 298
4.6 Conservation of Energy 307
4.6.1 The First Law of Thermodynamics 3086 Contents
4.6.2 Steady-State Energy Equation 309
4.6.3 Unsteady-State Energy Equation 320
Key Equations in Finite Control Volume Analysis 323
Problems 327
Chapter 5 Differential Analysis 357
5.1 Introduction 357
5.2 Kinematics 358
5.2.1 Translation 358
5.2.2 Rotation 360
5.2.3 Angular Deformation 363
5.2.4 Linear Deformation 363
5.3 Conservation of Mass 365
5.3.1 Continuity Equation 365
5.3.2 The Stream Function 372
5.4 Conservation of Momentum 375
5.4.1 General Equation 376
5.4.2 Navier–Stokes Equation 379
5.4.3 Nondimensional Navier–Stokes Equation 381
5.5 Solutions of the Navier–Stokes Equation 385
5.5.1 Steady Laminar Flow Between Stationary Parallel Plates 385
5.5.2 Steady Laminar Flow Between Moving Parallel Plates 388
5.5.3 Steady Laminar Flow Adjacent to Moving Vertical Plate 391
5.5.4 Steady Laminar Flow Through a Circular Tube 394
5.5.5 Steady Laminar Flow Through an Annulus 396
5.5.6 Steady Laminar Flow Between Rotating Cylinders 399
5.6 Inviscid Flow 402
5.6.1 Bernoulli Equation for Steady Inviscid Flow 404
5.6.2 Bernoulli Equation for Steady Irrotational Inviscid Flow 407
5.6.3 Velocity Potential 409
5.6.4 Two-Dimensional Potential Flows 411
5.7 Fundamental and Composite Potential Flows 415
5.7.1 Principle of Superposition 415
5.7.2 Uniform Flow 417
5.7.3 Line Source/Sink Flow 418
5.7.4 Line Vortex Flow 421
5.7.5 Spiral Flow Toward a Sink 424
5.7.6 Doublet Flow 426
5.7.7 Flow Around a Half-Body 428
5.7.8 Rankine Oval 433
5.7.9 Flow Around a Circular Cylinder 437
5.8 Turbulent Flow 441
5.8.1 Occurrence of Turbulence 443
5.8.2 Turbulent Shear Stress 443
5.8.3 Mean Steady Turbulent Flow 445
5.9 Conservation of Energy 446
Key Equations in Differential Analysis of Fluid Flows 449
Problems 455Contents 7
Chapter 6 Dimensional Analysis and Similitude 477
6.1 Introduction 477
6.2 Dimensions in Equations 477
6.3 Dimensional Analysis 481
6.3.1 Conventional Method of Repeating Variables 483
6.3.2 Alternative Method of Repeating Variables 486
6.3.3 Method of Inspection 487
6.4 Dimensionless Groups as Force Ratios 488
6.5 Dimensionless Groups in Other Applications 493
6.6 Modeling and Similitude 494
Key Equations for Dimensional Analysis and Similitude 506
Problems 507
Chapter 7 Flow in Closed Conduits 525
7.1 Introduction 525
7.2 Steady Incompressible Flow 526
7.3 Friction Effects in Laminar Flow 532
7.4 Friction Effects in Turbulent Flow 536
7.5 Practical Applications 544
7.5.1 Estimation of Pressure Changes 544
7.5.2 Estimation of Flow Rate for a Given Head Loss 546
7.5.3 Estimation of Diameter for a Given Flow Rate and Head Loss 547
7.5.4 Head Losses in Noncircular Conduits 548
7.5.5 Empirical Friction Loss Formulas 549
7.5.6 Local Head Losses 552
7.5.7 Pipelines with Pumps or Turbines 559
7.6 Water Hammer 560
7.7 Pipe Networks 565
7.7.1 Nodal Method 566
7.7.2 Loop Method 568
7.8 Building Water Supply Systems 573
7.8.1 Specification of Design Flows 574
7.8.2 Specification of Minimum Pressures 574
7.8.3 Determination of Pipe Diameters 576
Key Equations for Flow in Closed Conduits 583
Problems 587
Chapter 8 Turbomachines 608
8.1 Introduction 608
8.2 Mechanics of Turbomachines 609
8.3 Hydraulic Pumps and Pumped Systems 614
8.3.1 Flow Through Centrifugal Pumps 616
8.3.2 Efficiency 621
8.3.3 Dimensional Analysis 622
8.3.4 Specific Speed 626
8.3.5 Performance Curves 630
8.3.6 System Characteristics 6328 Contents
8.3.7 Limits on Pump Location 635
8.3.8 Multiple Pump Systems 640
8.3.9 Variable-Speed Pumps 642
8.4 Fans 644
8.4.1 Performance Characteristics of Fans 644
8.4.2 Affinity Laws of Fans 645
8.4.3 Specific Speed 646
8.5 Hydraulic Turbines and Hydropower 648
8.5.1 Impulse Turbines 648
8.5.2 Reaction Turbines 654
8.5.3 Practical Considerations 658
Key Equations for Turbomachines 664
Problems 668
Chapter 9 Flow in Open Channels 693
9.1 Introduction 693
9.2 Basic Principles 694
9.2.1 Steady-State Continuity Equation 694
9.2.2 Steady-State Momentum Equation 694
9.2.3 Steady-State Energy Equation 711
9.3 Water Surface Profiles 724
9.3.1 Profile Equation 724
9.3.2 Classification of Water Surface Profiles 725
9.3.3 Hydraulic Jump 731
9.3.4 Computation of Water Surface Profiles 737
Key Equations in Open-Channel Flow 746
Problems 749
Chapter 10 Drag and Lift 759
10.1 Introduction 759
10.2 Fundamentals 760
10.2.1 Friction and Pressure Drag 762
10.2.2 Drag and Lift Coefficients 762
10.2.3 Flow over Flat Surfaces 765
10.2.4 Flow over Curved Surfaces 767
10.3 Estimation of Drag Coefficients 770
10.3.1 Drag on Flat Surfaces 770
10.3.2 Drag on Spheres and Cylinders 774
10.3.3 Drag on Vehicles 781
10.3.4 Drag on Ships 784
10.3.5 Drag on Two-Dimensional Bodies 785
10.3.6 Drag on Three-Dimensional Bodies 786
10.3.7 Drag on Composite Bodies 786
10.3.8 Drag on Miscellaneous Bodies 789
10.3.9 Added Mass 790
10.4 Estimation of Lift Coefficients 791
10.4.1 Lift on Airfoils 791
10.4.2 Lift on Airplanes 794
10.4.3 Lift on Hydrofoils 799Contents 9
10.4.4 Lift on a Spinning Sphere in Uniform Flow 800
Key Equations for Drag and Lift 803
Problems 806
Chapter 11 Boundary-Layer Flow 827
11.1 Introduction 827
11.2 Laminar Boundary Layers 829
11.2.1 Blasius Solution for Plane Surfaces 829
11.2.2 Blasius Equations for Curved Surfaces 834
11.3 Turbulent Boundary Layers 836
11.3.1 Analytic Formulation 836
11.3.2 Turbulent Boundary Layer on a Flat Surface 837
11.3.3 Boundary-Layer Thickness and Shear Stress 844
11.4 Applications 845
11.4.1 Displacement Thickness 845
11.4.2 Momentum Thickness 849
11.4.3 Momentum Integral Equation 850
11.4.4 General Formulations for Self-Similar Velocity Profiles 854
11.5 Mixing-Length Theory of Turbulent Boundary Layers 856
11.5.1 Smooth Flow 856
11.5.2 Rough Flow 857
11.5.3 Velocity-Defect Law 858
11.5.4 One-Seventh Power Law Distribution 859
11.6 Boundary Layers in Closed Conduits 859
11.6.1 Smooth Flow in Pipes 860
11.6.2 Rough Flow in Pipes 861
11.6.3 Notable Contributors to Understanding Flow in Pipes 862
Key Equations for Boundary-Layer Flow 863
Problems 867
Chapter 12 Compressible Flow 884
12.1 Introduction 884
12.2 Principles of Thermodynamics 885
12.3 The Speed of Sound 891
12.4 Thermodynamic Reference Conditions 898
12.4.1 Isentropic Stagnation Condition 898
12.4.2 Isentropic Critical Condition 903
12.5 Basic Equations of One-Dimensional Compressible Flow 905
12.6 Steady One-Dimensional Isentropic Flow 907
12.6.1 Effect of Area Variation 907
12.6.2 Choked Condition 908
12.6.3 Flow in Nozzles and Diffusers 910
12.7 Normal Shocks 923
12.8 Steady One-Dimensional Non-Isentropic Flow 935
12.8.1 Adiabatic Flow with Friction 936
12.8.2 Isothermal Flow with Friction 949
12.8.3 Diabatic Frictionless Flow 951
12.8.4 Application of Fanno and Rayleigh Relations to Normal Shocks 95710 Contents
12.9 Oblique Shocks, Bow Shocks, and Expansion Waves 962
12.9.1 Oblique Shocks 962
12.9.2 Bow Shocks and Detached Shocks 970
12.9.3 Isentropic Expansion Waves 972
Key Equations in Compressible Flow 977
Problems 984
Appendix A Units and Conversion Factors 999
A.1 Units 999
A.2 Conversion Factors 1000
Appendix B Fluid Properties 1003
B.1 Water 1003
B.2 Air 1004
B.3 The Standard Atmosphere 1005
B.4 Common Liquids 1006
B.5 Common Gases 1007
B.6 Nitrogen 1008
Appendix C Properties of Areas and Volumes 1009
C.1 Areas 1009
C.2 Properties of Circles and Spheres 1011
C.2.1 Circles 1011
C.2.2 Spheres 1012
C.3 Volumes 1012
Appendix D Pipe Specifications 1013
D.1 PVC Pipe 1013
D.2 Ductile Iron Pipe 1014
D.3 Concrete Pipe 1014
D.4 Physical Properties of Common Pipe Materials 1014
Bibliography 1015
Index 1026
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً