AC Power Systems Handbook

AC Power Systems Handbook
اسم المؤلف
Jerry C. Whitaker
التاريخ
22 يونيو 2021
المشاهدات
التقييم
(لا توجد تقييمات)
Loading...

AC Power Systems Handbook
Second Edition
Jerry C. Whitaker
Table of Contents
Chapter 1: Power Distribution and Control
1.1 Introduction
1.1.1 Defining Terms
1.1.2 Power Electronics
1.2 AC Circuit Analysis
1.2.1 Power Relationship in AC Circuits
1.2.2 Complex Numbers
1.2.3 Phasors
1.2.4 Per Unit System
1.3 Elements of the AC Power System
1.4 Power Transformers
1.4.1 Basic Principles
1.4.2 Counter-Electromotive Force
1.4.3 Full Load Percent Impedance
1.4.4 Design Considerations
1.4.5 The Ideal Transformer
1.4.6 Application Considerations
1.5 Power Generation
1.5.1 Fundamental Concepts
1.5.1.1 Control Techniques
1.5.2 Power Generating Systems
1.5.2.1 Fossil Fuel Power Plants
1.5.2.2 Nuclear Power Plants
1.5.2.3 Hydroelectric Power Plants
1.6 Capacitors
1.7 Transmission Circuits
1.7.1 Types of Conductors
1.7.1.1 Overhead Cables
1.7.1.2 Underground Cables
1.7.1.3 Skin Effect
1.7.2 Dielectrics and Insulators
1.7.2.1 Insulating Liquids
1.7.2.2 Insulating Solids
1.7.3 Control and Switching Systems
1.7.3.1 Fault Protection Devices
1.7.3.2 Lightning Arrester
1.8 Utility AC Power System
1.8.1 Power Distribution
1.8.2 Distribution Substations
1.8.2.1 Breaker Schemes
1.8.3 Voltage Analysis
1.8.4 High-Voltage DC Transmission
1.8.4.1 Economic Comparison of AC and DC Transmission
1.8.4.2 DC Circuit Breakers
1.9 Power Factor
1.9.1 PF Correction Techniques
1.9.1.1 On-Site Power Factor Correction
1.9.1.2 Shunt Reactors
1.9.1.3 Unwanted Resonance Conditions
1.9.1.4 Series Capacitor Compensation
1.9.1.5 Static Compensation Devices
1.10Utility Company Interfacing
1.10.1 Phase-to-Phase Balance
1.10.2 Measuring AC Power
1.10.2.1 Digital Measurement Techniques
1.11References
1.12Bibliography
Chapter 2: The Origins of AC Line Disturbances
2.1 Introduction
2.2 Naturally Occurring Disturbances
2.2.1 Sources of Atmospheric Energy
2.2.2 Characteristics of Lightning
2.2.2.1 Cloud-to-Cloud Activity
2.2.3 Lightning Protection
2.2.3.1 Protection Area
2.2.4 Electrostatic Discharge
2.2.4.1 Triboelectric Effect
2.2.5 EMP Radiation
2.2.6 Coupling Transient Energy
2.3 Equipment-Caused Transient Disturbances
2.3.1 Utility System Faults
2.3.2 Switch Contact Arcing
2.3.3 Telephone System Transients
2.3.4 Nonlinear Loads and Harmonic Energy
2.3.4.1 Harmonic Sources
2.3.5 Carrier Storage
2.3.6 Transient-Generated Noise
2.3.6.1 ESD Noise
2.3.6.2 Contact Arcing
2.3.6.3 SCR Switching
2.4 Power Disturbance Classifications
2.4.1 Standards of Measurement
2.5 Assessing the Threat
2.5.1 Fundamental Measurement Techniques
2.5.1.1 Root-Mean-Square
2.5.1.2 Average-Response Measurement
2.5.1.3 Peak-Response Measurement
2.5.1.4 Meter Accuracy
2.5.2 Digital Measurement Instruments
2.5.3 Digital Signal Conversion
2.5.3.1 The A/D Conversion Process
2.5.4 Digital Monitor Features
2.5.4.1 Capturing Transient Waveforms
2.5.4.2 Case in Point
2.6 Reliability Considerations
2.7 References
2.8 Bibliography
Chapter 3: The Effects of Transient Disturbances
3.1 Introduction
3.2 Semiconductor Failure Modes
3.2.1 Device Ruggedness
3.2.2 Forward Bias Safe Operating Area
3.2.3 Reverse Bias Safe Operating Area
3.2.4 Power-Handling Capability
3.2.5 Semiconductor Derating
3.2.6 Failure Mechanisms
3.2.6.1 Avalanche Breakdown
3.2.6.2 Alpha Multiplication
3.2.6.3 Punch-Through
3.2.6.4 Thermal Runaway
3.2.6.5 Breakdown Effects
3.2.6.6 Avalanche-Related Failure
3.2.6.7 Thermal Runaway
3.2.6.8 Thermal Second Breakdown
3.2.6.9 Metallization Failure
3.2.6.10 Polarity Reversal
3.3 MOSFET Devices
3.3.1 Safe Operating Area
3.3.2 MOSFET Failure Modes
3.4 Thyristor Components
3.4.1 Failure Modes
3.4.2 Application Considerations
3.5 ESD Failure Modes
3.5.1 Failure Mechanisms
3.5.1.1 Latent Failures
3.5.1.2 Case in Point
3.6 Semiconductor Development
3.6.1 Failure Analysis
3.6.2 Chip Protection
3.7 Effects of Arcing
3.7.1 Insulation Breakdown
3.8 References
3.9 Bibliography
Chapter 4: Power System Components
4.1 Introduction
4.1.1 Power-Supply Components
4.2 Power Rectifiers
4.2.1 Operating Rectifiers in Series
4.2.2 Operating Rectifiers in Parallel
4.2.3 Silicon Avalanche Rectifiers
4.2.4 Single-Phase Rectifier Configurations
4.2.4.1 Half-Wave Rectifier
4.2.4.2 Full-Wave Rectifier
4.2.4.3 Bridge Rectifier
4.2.4.4 Voltage Multiplier
4.2.5 Polyphase Rectifier Circuits
4.2.6 Power Supply Filter Circuits
4.2.6.1 Inductive Input Filter
4.2.6.2 Capacitive Input Filter
4.3 Power Electronics
4.3.1 Thyristor Devices
4.3.2 Thyristor Servo Systems
4.3.2.1 Inductive Loads
4.3.2.2 Applications
4.3.2.3 Triggering Circuits
4.3.2.4 Control Flexibility
4.3.3 Gate Turn-Off Thyristor
4.3.4 Reverse-Conducting Thyristor
4.3.5 Asymmetrical Silicon-Controlled Rectifier
4.3.6 Fusing
4.3.7 Power Transistors
4.3.8 Power MOSFET
4.3.8.1 Rugged MOSFET
4.3.9 Insulated-Gate Bipolar Transistor
4.3.10 MOS-Controlled Thyristor
4.4 Transformer Failure Modes
4.4.1 Thermal Considerations
4.4.1.1 Life Expectancy and Temperature
4.4.2 Voltage Considerations
4.4.3 Mechanical Considerations
4.4.3.1 Dry-Type and Liquid-Filled Transformers
4.4.3.2 Insulation Materials
4.4.3.3 Insulating Liquids
4.4.3.4 Cooling
4.5 Capacitor Failure Modes
4.5.1 Electrolytic Capacitors
4.5.1.1 Mechanical Failure
4.5.1.2 Temperature Cycling
4.5.1.3 Electrolyte Failures
4.5.2 Capacitor Life Span
4.5.3 Tantalum Capacitors
4.6 Fault Protectors
4.6.1 Fuses
4.6.2 Circuit Breakers
4.6.3 Semiconductor Fuses
4.6.4 Application Considerations
4.6.4.1 Transient Currents
4.6.4.2 Delay-Trip Considerations
4.7 References
4.8 Bibliography
Chapter 5: Power System Protection Alternatives
5.1 Introduction
5.1.1 The Key Tolerance Envelope
5.1.2 Assessing the Lightning Hazard
5.1.3 FIPS Publication 94
5.1.4 Transient Protection Alternatives
5.1.4.1 Specifying System-Protection Hardware
5.2 Motor-Generator Set
5.2.1 System Configuration
5.2.2 Motor-Design Considerations
5.2.2.1 Single-Shaft Systems
5.2.2.2 Flywheel Considerations
5.2.3 Maintenance Considerations
5.2.4 Motor-Generator UPS
5.2.4.1 Kinetic Battery Storage System
5.3 Uninterruptible Power Systems
5.3.1 UPS Configuration
5.3.2 Power-Conversion Methods
5.3.2.1 Ferroresonant Inverter
5.3.2.2 Delta Magnetic Inverter
5.3.2.3 Inverter-Fed L/C Tank
5.3.2.4 Quasi-Square Wave Inverter
5.3.2.5 Step Wave Inverter
5.3.2.6 Pulse-Width modulation Inverter
5.3.2.7 Phase Modulation Inverter
5.3.3 Redundant Operation
5.3.4 Output Transfer Switch
5.3.5 Battery Supply
5.4 Dedicated Protection Systems
5.4.1 Ferroresonant Transformer
5.4.1.1 Magnetic-Coupling-Controlled Voltage Regulator
5.4.2 Isolation Transformer
5.4.3 Tap-Changing Regulator
5.4.3.1 Variable Ratio Regulator
5.4.4 Variable Voltage Transformer
5.4.4.1 Brush Type
5.4.4.2 Induction Type
5.4.5 Line Conditioner
5.4.5.1 Hybrid Transient Suppressor
5.4.6 Active Power Line Conditioner
5.4.6.1 Application Considerations
5.5 References
5.6 Bibliography
Chapter 6: Facility Protection Methods
6.1 Introduction
6.1.1 Filter Devices
6.1.2 Crowbar Devices
6.1.2.1 Characteristics of Arcs
6.1.3 Voltage-Clamping Devices
6.1.3.1 Zener Components
6.1.3.2 Hybrid Suppression Circuits
6.1.4 Selecting Protection Components
6.1.5 Performance Testing
6.2 Facility Protection
6.2.1 Facility Wiring
6.2.2 Utility Service Entrance
6.3 Power-System Protection
6.3.1 Staging
6.3.2 Design Cautions
6.3.2.1 Specifications
6.3.3 Single-Phasing
6.4 Circuit-Level Applications
6.4.1 Protecting Low-Voltage Supplies
6.4.2 Protecting High-Voltage Supplies
6.4.3 Protection for Ungrounded Towers
6.4.4 Protecting Logic Circuits
6.4.5 Protecting Telco Lines
6.4.6 Inductive Load Switching
6.4.7 Device Application Cautions
6.4.8 Surge Suppressor Selection
6.5 References
6.6 Bibliography
Chapter 7: Facility Grounding
7.1 Introduction
7.1.1 Terms and Codes
7.1.1.1 The Need for Grounding
7.1.1.2 Equipment Grounding
7.1.1.3 System Grounding
7.1.1.4 The Grounding Electrode
7.1.1.5 Earth Electrode
7.2 Establishing an Earth Ground
7.2.1 Grounding Interface
7.2.1.1 Ground Electrode Testing
7.2.2 Chemical Ground Rods
7.2.3 Ufer Ground System
7.2.4 Bonding Ground-System Elements
7.2.5 Exothermic Bonding
7.2.6 Ground-System Inductance
7.2.7 Grounding Tower Elements
7.2.8 Ground-Wire Dressing
7.2.9 Facility Ground Interconnection
7.2.9.1 Personnel Protection
7.2.10 Grounding on Bare Rock
7.2.10.1 Rock-Based Radial Elements
7.3 Transmission-System Grounding
7.3.1 Transmission Line
7.3.1.1 Cable Considerations
7.3.2 Satellite Antenna Grounding
7.4 Designing a Building Ground System
7.4.1 Bulkhead Panel
7.4.1.1 Bulkhead Panel
7.4.2 Lightning Protectors
7.4.2.1 Typical Installation
7.4.3 Checklist for Proper Grounding
7.5 AC System Grounding Practices
7.5.1 Building Codes
7.5.2 Single-Point Ground
7.5.3 Isolated Grounding
7.5.4 Separately Derived Systems
7.5.5 Grounding Terminology
7.5.6 Facility Ground System
7.5.6.1 Grounding Conductor Size
7.5.6.2 High-Frequency Effects
7.5.7 Power-Center Grounding
7.5.7.1 Isolation Transformers
7.5.8 Grounding Equipment Racks
7.6 Grounding Signal-Carrying Cables
7.6.1 Analyzing Noise Currents
7.6.2 Types of Noise
7.6.3 Noise Control
7.6.4 Patch-Bay Grounding
7.6.5 Input/Output Circuits
7.6.6 Cable Routing
7.6.7 Overcoming Ground-System Problems
7.7 References
7.8 Bibliography
Chapter 8: Standby Power Systems
8.1 Introduction
8.1.1 Blackout Effects
8.2 Standby Power Options
8.2.1 Peak Power Shaving
8.2.2 Advanced System Protection
8.2.3 Choosing a Generator
8.2.3.1 Generator Types
8.2.4 UPS Systems
8.2.5 Standby Power-System Noise
8.2.6 Batteries
8.2.6.1 Terms
8.2.6.2 Sealed Lead-Acid Battery
8.3 Fault Tolerance as a Design Objective
8.3.1 Critical System Bus
8.3.2 Power Distribution Options
8.3.3 Plant Configuration
8.4 The Efficient Use of Energy
8.4.1 Energy Usage
8.4.1.1 Peak Demand
8.4.1.2 Load Factor
8.4.1.3 Power Factor
8.5 Plant Maintenance
8.5.1 Switchgear Maintenance
8.5.2 Ground-System Maintenance
8.6 References
8.7 Bibliography
Chapter 9: Safety and Protection Systems
9.1 Introduction
9.1.1 Facility Safety Equipment
9.2 Electric Shock
9.2.1 Effects on the Human Body
9.2.2 Circuit-Protection Hardware
9.2.3 Working With High Voltage
9.2.4 First Aid Procedures
9.2.4.1 Shock in Progress
9.2.4.2 Shock No Longer in Progress
9.3 Polychlorinated Biphenyls
9.3.1 Health Risk
9.3.2 Governmental Action
9.3.3 PCB Components
9.3.4 Identifying PCB Components
9.3.5 Labeling PCB Components
9.3.6 Record-Keeping
9.3.7 Disposal
9.3.8 Proper Management
9.4 OSHA Safety Requirements
9.4.1 Protective Covers
9.4.2 Identification and Marking
9.4.3 Extension Cords
9.4.4 Grounding
9.4.5 Management Responsibility
9.5 References
9.6 BibliographyChapter 10: Power Quality Standards
10.1 IEEE Standards of Interest
10.1.1 Surge Protective Devices
10.1.2 Power Capacitors Standards
10.1.3 Protective Relaying
10.1.4 Stationary Battery Standards
10.1.5 Transmission and Distribution
10.1.6 Substations
Conversion Tables
Cited References
كلمة سر فك الضغط : books-world.net

The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً